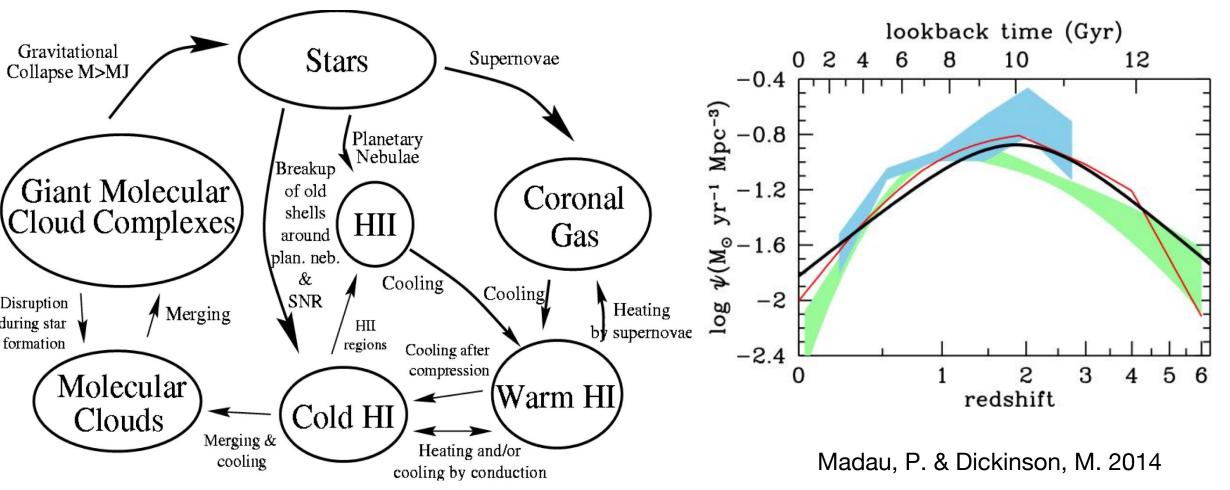
HI 21 cm emission from an Ensemble of Galaxies at an Average Redshift of 1

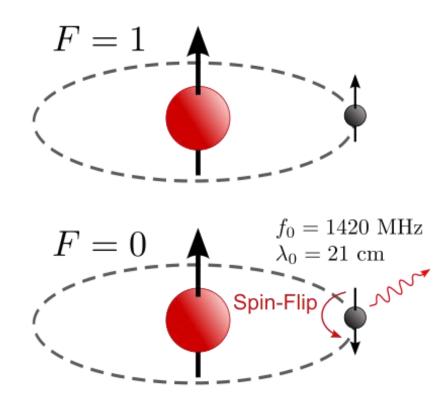
Chowdhury et al. 2020

Jiaqi Zou(邹佳琪)

2021.11.19



- Background
- Observation & Data sample
- Method & main results
- Summary


Background

Life Cycle of ISM (dominated by H)

Cosmic star formation history

Background

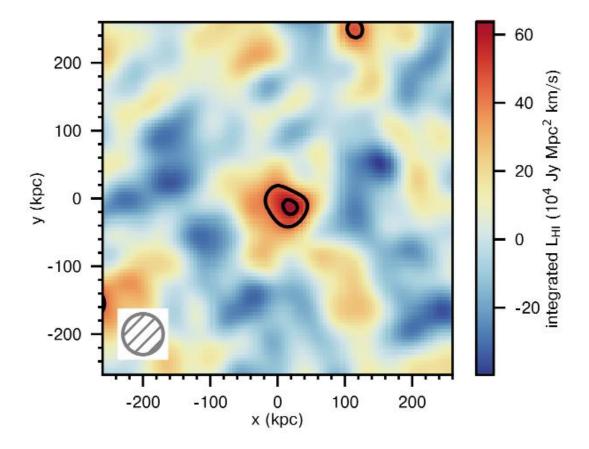
HI 21cm emission

Current study:

detect individual galaxy: z_max=0.376 (Fern andez et al. 2016). stacking: non-detection with z>1 (Kanekar et al. 2016). intensity mapping

Further imporvement:

next generation of radio telescopes (e.g. SKA)



Observation & Data sample

- New telescope: The upgraded Giant Metre-Wave Radio Telescope in India
- New Band: 550-850 MHz
- Accurate redshift: v≈55 km/s from the DEEP2 Galaxy Redshift Survey(Keck II Telescope)
- Large galaxy samples: 7653 blue, star-forming galaxies with z = 0.74~1.45
- observing time: 90 hours

The average HI mass of star-forming galaxies

- Stacking the HI 21cm emission
- spatial resolution: 60kpc
- signal: 4.5 σ
- luminosity density: $L_{HI} = (6.37 \pm 1.42) \times 10^5 \text{ JyMpc}^2 \text{kms}^{-1}$
- average HI mass:
- $M_{HI} = 1.87 \times 10^4 L_{HI}$
 - = (1.19 \pm 0.26) \times 10¹⁰ M_{\odot}
- HI mass in Milky Way: $M_{\rm HI} \sim 8 \times 10^9 M_{\odot}$ (Kalberla et al. 2009)

The mean stellar mass of the galaxies

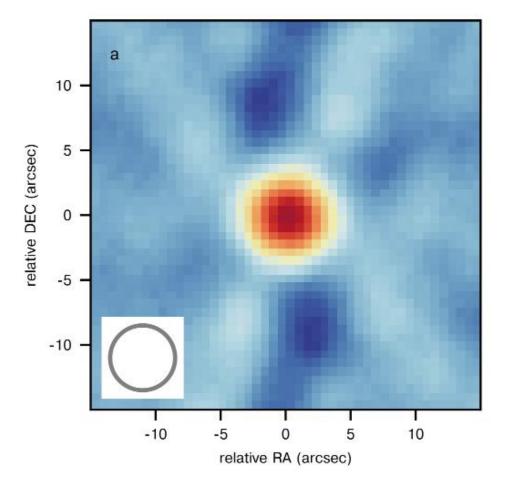
- $M_* = 9.4 \times 10^9 M_{\odot}$
- The relation between the (U B) color and the ratio of the stellar mass to the B-band luminosity:

For z=0: $\log M/L_B(z=0) = -0.942 + 1.737(B - V_{Vega})$,

Calibrate using stellar masses estimated from the DEEP2 sample:

$$M_* = L_{B,\text{Vega}} \times M/L_B(z=0) \times C_K(U-B,z),$$

$$\log C_K(U - B, z) = -0.0244 - 0.398 z + 0.105 (U - B_{Vega}).$$


• The ratio of average M_{HI} to average M_*

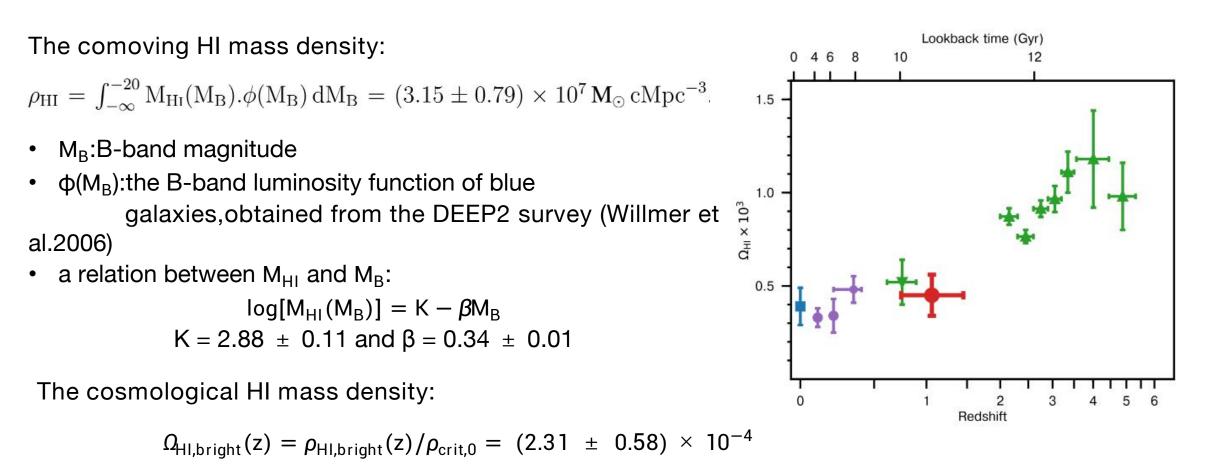
$$\langle M_{\rm HI} \rangle / \langle M_* \rangle = 1.26 \pm 0.28$$

• The ratio of average $M_{\rm HI}$ to average M_{*} in local universe $\sim 40\%$ (Catinella, B. et al. 2018)

The average star-formation rate of the galaxies

- stacking the rest-frame 1.4 GHz continuum
- detection: 29σ significance
- luminocity density: $L_{1.4GHz}$ = (2.09 \pm 0.07) \times $10^{22}WHz^{-1}$
- average star-formation rate: $SR = (3.7 \pm 1.1) \times 10^{-22} L_{1.4GHz}$ $= 7.72 \pm 0.27 (M_{\odot}/yr)$

galaxy location


main-sequence galaxy at z=1.03:

- $t_{dep,HI} = \frac{M_{HI}}{SFR} = (1.54 \pm 0.35) \text{ Gyr}$
- $t_{dep,H_2} = \frac{M_{H_2}}{SFR} \approx 0.7$ Gyr (Tacconi, L. J. et al. 2013)
- the atomic gas need to be replenished via gas accretion after 1-2 Gyr
- similar to the timescale of SFR decline steeply

For local universe:

- $t_{dep,HI} (\approx 7.8 Gy) > t_{dep,H_2} (\approx 1 \text{ Gyr})$
- sustain its present SFR without the need for fresh gas accretion

The cosmological HI mass density

$$\Omega_{\rm HI}(z) = \rho_{\rm HI}(z)/\rho_{\rm crit,0} = (4.5 \pm 1.1) \times 10^{-4}$$

- The first detection of the stacked HI 21 cm emission signal at $z \approx 1$
- The explanations of the decline in the cosmic SFR at redshifts below 1:
 - insufficient infall atomic gas
- ✓ short depletion timescale
- \checkmark the slow evolution of HI mass density

Number of Galaxies	7,653
Redshift range	0.74 - 1.45
Mean redshift, $\langle z \rangle$	1.03
Mean stellar mass, $\langle M_* \rangle$	$9.4\times10^9~\text{M}_\odot$
Mean Hı Mass, $\langle {\rm M_{H{\scriptscriptstyle I}}}\rangle$	$(1.19\pm 0.26)\times 10^{10}~M_{\odot}$
$ m \langle M_{H_l} angle / \langle {f M}_* angle$	1.26 ± 0.28
Radio-derived SFR	$7.72\pm0.27~{\rm M}_\odot/{\rm yr}$
HI depletion timescale, $\langle t_{dep,HI} \rangle$	$1.54 \pm 0.35~\mathrm{Gyr}$
$\Omega_{ m H^{I}, Bright}$ at $\langle z angle = 1.06$	$(2.31 \pm 0.58) \times 10^{-4}$
Total $\Omega_{ m HI}$ at $\langle z angle = 1.06$	$(4.5 \pm 1.1) \times 10^{-4}$

- The tension between the evolution of the ratio of average HI mass to average stellar mass and the non-evolution of HI mass density?
- Why there is a bar in the stacking continuum figure?
- How to approve the senario: the quenching of star-formation activity at z < 1 is likely to arise due to insufficient gas infall?