Large metallicity variations in the Galactic interstellar medium

De Cia et al. 2021 https://www.nature.com/articles/s41586-021-03780-0 Speaker: Ruizhe Feng 2021.12.3 @student seminar

- Background
- Data
- Methods
- Results
- Summary 0

Outline

- Three main elements
 - the pristine gas coming from outside our galaxy
 - the metal-rich gas from dying stars
 - the dust created by the condensation of the metals
- Theoretical models assume that the metallicity of the neutral ISM in Galaxy
 - is homogeneously mixed
 - is solar metallicity in the solar vicinity

Interstellar medium (ISM)

The Horsehead Nebula (APOD 001229)

Dust depletion

- The phenomenon that metals are missing from the observable gas phase but instead are incorporated into dust grains
- Only the gaseous part of the ISM can be "seen" in ultraviolet/optical spectroscopy; atoms in dust grains don't leave a spectral fingerprint
- It makes the measurements of the ISM's metallicity complicated

Take-home message

- There are large metallicity variations in the Galactic ISM
- The ISM includes many regions of low metallicity, and the average metallicity is not as high as in the Sun

- 25 bright type-O and type-B stars in the Galaxy
 - HST/STIS near-ultraviolet spectra
 - VLT/UVES high-resolution optical spectra
 - high-enough rotational velocities to disentangle between stellar and ISM features
- Measure column densities from absorption lines in spectra

Data

6

Nethods

- Two methods for dust-correction
 - Relative method
 - F* method
- Dust-corrected abundance: $[X/H]_{tot} = [X/H] \delta_X$

•
$$[X/Y] \equiv \log \frac{N(X)}{N(Y)} - \log \frac{N(X)_{C}}{N(Y)_{C}}$$

7

Relative method

- (De Cia et al. 2016, A&A, 596, A97)
- properties
- [Zn/Fe]: dust tracer
- $\delta_X = A2_X + B2_X \times [Zn/Fe]$
- Linear fit: y = a + bx
 - $a = [M/H]_{tot}, b = [Zn/Fe]_{fit}$
 - $x = B2_X$, $y = \log N(X) \log N(H) \log (X/H)_{\odot} A2_X$

Using any relative abundance [X/Y] where X and Y (here Zn) have very different refractory

F* method

- (Jenkins, E. B. 2009, ApJ, 700, 1299) D
- Linear fit: y = a + bx
 - $\delta_X = B_X + A_X(F_* z_X)$
 - $y = \log N(X) \log N(H) \log (X/H)_{\odot} B_X + A_X \times z_X$
 - $x = A_X, a = [M/H]_{tot}, b = F^*$

Correlating all the observed abundances and minimizing the residuals with respect to F^{*} • F*: a factor representing the overall strength of dust depletion in individual lines of sight

Results - relative method

- Red points: the most volatile elements
- The most volatile elements show disagreement with the mildly depleted elements and the more refractory elements

Results - F* method

- Total metallicities $[M/H]_{tot}$ ranging between -0.76 dex and +0.26 dex
- 2/3 of samples show subsolar metallicities
- Average metallicity: -0.26 ± 0.06 dex $(55 \pm 7\% \text{ solar})$
- The maximum variations between lines of sight are more than an order of magnitude, mostly subsolar

Results - metallicity

Fig.3 | Metallicities in the neutral ISM. Dust-corrected metallicities are error bars show the 1σ uncertainties.

- Pristine gas falling onto the Galactic disk in the form of high-velocity clouds (HVC) can cause the observed inhomogeneities on scales of tens of parsecs.
- Pristine gas does not efficiently mix into the ISM
- The rate of gas accretion on the Galaxy disk $(0.1 - 1.4 M_{\odot} yr^{-1})$ is sufficient to sustain the inhomogeneities
- The inefficiency may be because the different phases involved in the mixing have widely different kinematics and different physical conditions

Possible mechanism

13

Comments

- Very surprising results that may have a strong impact on our understanding of the evolution of galaxies
- But the relative and F* methods in the paper are explained too briefly... especially the meaning of some coefficients

Summary

- Large local variations of metallicity in the neutral ISM in Galaxy are measured
- The ISM includes many regions of low metallicity, and the average metallicity is not as high as in the Sun
- The variations may be due to accretion of low-metallicity pristine gas
- The gas mixing is more inefficient than previously thought.

Questions

- Why can [Zn/Fe] be a dust tracer in relative method? Why can it be a parameter rather than a measured value?
- How to get coefficients A_X , B_X and z_X in F* method?
- Why does the y intercept of the linear fitting give $[M/H]_{tot}$? Does $[M/H]_{tot}$ equal to $[X/H]_{tot}$?
- Why can different kinematics and physical conditions lead to inefficiently gas mixing?