The MUSE-Faint survey II. The dark matter–density profile of the ultra-faint dwarf galaxy Eridanus 2

Sebastiaan L. Zoutendijk et al.

A&A 2021

10.1051/0004-6361/202040239

Outline

- 1. Introduction
- 2. Methods
- 3. Results & Conclusions
- 4. Discussion & Summary
- 5. Possible questions

Cold dark matter (CDM) paradigm

- Cold -> moving much more slower than light
- Dark -> Only interact through gravity, no electromagnetic interaction

Problems occurs when comes to small-scale (<1Mpc, <10¹¹M_{sun})

Problems

Missing satellite & dwarfs
 Core-cusp problem
 Too-big-too fail

Solutions

Alternative to CDM
 Modify gravity laws

Bullock et al. 2017

Core-cusp problem: the observed cores of dark-matter dominated galaxies are both less dense and less cuspy than predicted in CDM.

• CDM (NFW profile)

$$\rho_{\rm CDM}(r;\rho_0,r_{\rm s}) = \frac{\rho_0}{(r/r_{\rm s})(1+r/r_{\rm s})^2},$$

• Self interacting DM (SIDM): energy & momentum exchange btw DM particles

$$\rho_{\text{SIDM}}(r;\rho_0, r_c, r_s) = \frac{\rho_0}{r_c/r_s + (r/r_s)(1 + r/r_s)^2}$$

• Fuzzy CDM (FCDM): axion, wave-like (quantum-mechanic) at center

$$\rho_{\text{FDM}}(r;\rho_{\text{sol},0},r_{\text{sol}},\rho_{\text{CDM},0},r_{\text{s}}) = \begin{cases} \rho_{\text{sol}}(r;\rho_{\text{sol},0},r_{\text{sol}}), & (r < r_{\text{t}}), \\ \rho_{\text{CDM}}(r;\rho_{\text{CDM},0},r_{\text{s}}), & (r \ge r_{\text{t}}), \end{cases}$$

$$\rho_{\rm sol}(r;\rho_{\rm sol,0},r_{\rm sol}) = \frac{\rho_{\rm sol,0}}{(1+(r/r_{\rm sol})^2)^8}.$$

Use alternative DM model to solve the core-cusp problem

Bullock et al. 2017

Ultra-faint dwarf galaxy (UFDs) as Dark Matter laboratory

Simon et al. 2019

- Lowest luminosity Mv > -7.7; $M * < 10^5 M_{sun}$; $L < 10^5 L_{sun}$
- Oldest, most metal-poor, most DM-dominated
- Baryon influence to DM density profile is dynamically negligible
- probes of dark matter on smaller scales (~20–30 pc)

Eridanus-2

- One of the largest, most luminous, and most distant MW-satellite galaxy
- M_v=-7.1
- $M_* \approx 9 \times 10^4 M_{sun}$
- Small globular star cluster in the center (not supported in this paper)

Li, 2017,Brandt,2016 https://en.wikipedia.org/wiki/Eridanus_II Deep MUSE-Faint survey is capable of measuring faint star velocity in low-z UFDs

• Mean AB mag > 31

Roland et al. 2017

Purpose: Constrain parameters of CDM, Self Interacting Dark Matter (SIDM) ,Fuzzy CDM (FCDM) and calculate their possibility

Method

1. Measure the stars' velocity in Eri-2 as input

2. Constrain parameters of 3 models

3. Recover the DM density profile

4. Calculate model evidence

Zoutendijk et al. 2021

Challenge of converting 2d to 3d

- Only know projected positions & radial velocity of the stars
- So when converting it into 3d, there are velocity anisotropy & mass degeneracy
- Use 2 tools to derive density profiles:
- 1. CJAM
- 2. PyGravSphere

Results Parameters of alternative DM models

CDM assumption

SIDM assumption

FCDM assumption

Zoutendijk et al. 2021

Results Recovered DM density profile

Results

Recovered de-projected mass-to-light profiles

Summary

- Introduction
 - Core-cusp problem & alternative for CDM
 - Ultra-faint dwarf galaxies (UFDs) are Dark Matter laboratory & Eri-2 is one of them
 - Deep MUSE-Faint survey is capable of measuring faint star velocity in low-z UFDs
- Methods
 - Using stars' velocity in UFDs to constrain parameters of CDM, Self Interacting Dark Matter (SIDM) ,Fuzzy CDM (FCDM) and calculate their possibility.
- Results
 - Constrain the 3 models' parameters
 - Uncertain about the survival or location of the star cluster
 - CJAM and pyGravSphere recover similar dark matter-density profiles for CDM
 - Not significant to rule out any models

Discussion

- Eri-2's shape is elliptical (0.45), but pyGravSphere only spherical
- What if DM is made up of several forms, such as mixture of MACHO (MAssive Compact Halo Objects) & WIMP?
- It doesn't contain proper motion, which means the measurement wouldn't be accurate enough or the samples may not sufficient to distinguish cusp from core central profile.
- More samples:
 - 1. Deeper observation: current high-resolution spectrographs are not able to reach the spatial resolution required for these crowded systems.
 - 2. Extend study to multiple UFDs

Possible questions

- 1. What's the prior probability for the two methods? (How did the Bayes inference conduct?)
- 2. How will the baryon influence the dark matter density structure?
- 3. Are there any other method to detect DM via UFDs?

1. What's the prior probability for the two methods? (How did the Bayes inference conduct?)

Table 1. Limits of the uniform CJAM/MultiNest priors and to which profiles they apply.

 Table 3. Limits of the uniform pyGravSphere/emcee priors on the darkmatter parameters.

Prior	Min.	Max.	Profiles
$\log_{10}(\rho_1/M_{\odot}{\rm kpc}^{-3})^{(a)}$	6	12	SI
$\log_{10}(\rho_2/M_{\odot}{\rm kpc}^{-3})^{(a)}$	6	12	C, SI
$\log_{10}(\rho_3/M_{\odot}{\rm kpc}^{-3})^{(a)}$	6	12	C, SI
$\log_{10}(\rho_{\rm CDM,100}/M_{\odot}{\rm kpc}^{-3})$	6	10	F
$\alpha_{\rm CDM,100}$	-3	-1	F
$\log_{10}(r_{\rm sol}/r_{\rm s})$	-3	0	F
$\log_{10} \varepsilon$	-5	$\log_{10} 1/2$	F
$v_0 / \text{km s}^{-1}$	65	85	C, SI, F

Prior	Minimum	Maximum
$\log_{10}(\rho_0/M_{\odot}{\rm kpc}^{-3})$	3	15
$\log_{10}(r_{\rm s}/\rm{kpc})$	-2.5	2.5
$\alpha^{(a)}$	0.5	3
$\beta^{(a)}$	3	9
$\gamma^{(a)}$	0	1.5
$\gamma_i^{(b)}$	0	9
$\tilde{oldsymbol{eta}}_0$	-1	1
$ ilde{eta}_{\infty}$	-1	1
$\log_{10}(r_0/\text{kpc})$	$\log_{10}(0.5R_{1/2}/\text{kpc})$	$\log_{10}(2R_{1/2}/\text{kpc})$
η	1	3

Notes. Listed are the characteristic density ρ_0 , the Navarro–Frenk– White (NFW) scale radius r_s (Eq. (1)), the Hernquist–Zhao α , β , and γ parameters (Eq. (20)), the broken power-law slopes γ_i (Eq. (19)), the symmetrized inner and outer velocity anisotropies $\tilde{\beta}_0$ and $\tilde{\beta}_{\infty}$ (Eq. (16)–(17)), the anisotropy transition radius r_0 , and the sharpness η of the anisotropy transition (Eq. (13)). ^(a) In the case of the NFW model, α ,

2. How will the baryon influence the dark matter density structure?

• Low star forming, few Supernovae, less stellar feedback to alter DM density stucture

3. Are there any other method to detect DM via UFDs?

- Direct: baryonic matter velocity
- Indirect: DM annihilation generate γ -ray & radio thru synchronous

Dwarf galaxies

ADOPTED DWARF GALAXY NAMING CONVENTION

Bright Dwarfs: $M_{\star} \approx 10^{7-9} M_{\odot}$ - the faint galaxy completeness limit for field galaxy surveys

Classical Dwarfs: $M_{\star} \approx 10^{5-7} M_{\odot}$ - the faintest galaxies known prior to SDSS

Ultra-faint Dwarfs: $M_{\star} \approx 10^{2-5} M_{\odot}$ – detected within limited volumes around M31 and the Milky V