A Galactic－scale gas wave in the Solar Neighborhood

João Alves，Catherine Zucker，Alyssa A．Goodman，Joshua S．Speagle，Stefan Meingast，Thomas Robitaille，Douglas P． Finkbeiner，Edward F．Schlafly，and Gregory M．Green

Haochang Jiang（蒋旲昌）
2021．10．15，DoA student seminar

We are all in the gutter, but some

of us are looking at the stars.

— Oscar Wilde (1854-1900)

Sir John Frederick William Herschel

- bright stars in south sky inclined with the milk way equator

ASTRONOMICAL OBSERVATIONS

AT THE CAPE OF G0OD HOPE
 whons sumack of the vieblie ueavexs

B. A. Gould

- determined the coordinates

2

B. A. Gould

- determined the coordinates

2

B. A. Gould

- determined the coordinates

2

AMERICAN
JOURNAL OF SCIENCE AND ARTS.
[THILD SERIES.]
 firot Shast by B. A. Goucd.

 raring des zarilicisen Himmels is well known to lrwes of aatrocoury Hia problem was mo lose that he formetion of a ramplete list of all the stars of the northem hemisphere on
 oseriad out a fineeling nost orly ay exhalurive sotice of ebstit, \$at likewixo " woiking lict," whieh on nosstiaticn of nestbera tuestriosrivs is new cumployig for the issestaiuative of th
 time, with an ascuraiy camply zufficett for al purposes wlina do netrosnto ninto arsxisioy.
In this werk his mayzitude of eact atar was estimased ta
 of twun feversl lizes, the ixtan of the avereal esticasks was triken and is yiven in the publis itd catalogue to the neacest tenti, of a enit. In sias Profosoor Litrowo of Vienna mater a
 fuclicatos an aypusx mats unifermity oi diatrotions fer the sare lvirg situin tse poction ơ epsese ender masiceration

1919

Harlow Shapley

- the close (to 1 kpc) bright stars form a unique separate subsystem - Local system

1919

Harlow Shapley

- the close (to 1 kpc) bright stars form a unique separate subsystem - Local system
- "From a modern standpoint, the term "Local system" is more substantive, $\cdots \cdots$...the presence of cold atomic H1, molecular H2, and high temperature coronal gas and dust."

Major Cloud Catalog

Parrot \& Grenier 2003
illustrating with improved distance

Gould's Belt show off as a ring in 3D map

How to form the Gould Belt?

- Supernova explosion
- Evolution of arm
- High-v cloud

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Blaauw 1965
the distribution of the nearest $O B$ associations
de Zeeuw et al. 1965 re-plot by Bobylev 2014

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Blaauw 1965
the distribution of the nearest $O B$ associations
the model is not complete
de Zeeuw et al. 1965 re-plot by Bobylev 2014

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Olano 1982
gas dynamic model
initial Vexpansion $\approx 20 \mathrm{~km} / \mathrm{s}$
de Zeeuw et al. 1965 re-plot by Bobylev 2014

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Olano 1982
gas dynamic model
initial Vexpansion $\approx 20 \mathrm{~km} / \mathrm{s}$
$\mathrm{l}_{0}=131^{\circ}, \mathrm{R}_{0}=166 \mathrm{pc}$
de Zeeuw et al. 1965 re-plot by Bobylev 2014

Supernova explosion

Gould's Belt is the result of the expansion of extremely hot gas

Lindblad 2000; Bobylev 2004, 2006
intrinsic differential rotation
$\omega_{0}=-24 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$
$\mathrm{I}_{0}=127^{\circ}, \mathrm{R}_{0}=166 \mathrm{pc}$ the flat shape
de Zeeuw et al. 1965 re-plot by Bobylev 2014

Supernova explosion

Many remained problems:

- older associations should lie further from center than younger ones, but not observed
- complex of molecular clouds in Taurus lies inside the expanding ellipse
- still very hard to explain the shape of Gould's Belt expansion is more likely from a line, than a point center

Evolution of arm

- A gas cloud collide with a spiral density wave of Orion arm. The central regions of this parent cloud compressed to the Gould belt.

Olano 2001

High-v clouds

- A High-v cloud beyond galactic plane collide onto it. The resulted symmetric gas cloud elongates into an ellipse.

Lepin \& G. Duvert 1994; Comeron \& Torra 1992; Bekki 2009

Gould's Belt?

Gould's Belt?

A Galactic-scale gas wave in the Solar Neighborhood

Radcliffe Wave!

10

Radcliffe Wave!

* Radcliffe Institute for Advanced Study, Harvard University

Take home message

Length	$2.7 \pm 0.2 \mathrm{kpc}$
Scatter	$60 \pm 15 \mathrm{pc}$
Amplitude	$160 \pm 30 \mathrm{pc}$
Mass	$\geq 3 \times 10^{6} \mathrm{M}_{\odot}$

The authors find a narrow and coherent dense gas structure, disputing the Gould Belt model

Take home message

The authors find a narrow and coherent dense gas structure, disputing the Gould Belt model

Mapping the solar neighborhood

Chambers et al. 2016

- Pan-STARRS1 survey - photometry
- Gaia astrometric survey - parallaxes

Brown et al. 2018

Mapping the solar neighborhood

Distance Modulus μ (mag)

Mapping the solar neighborhood

Distance Modulus μ (mag)

Mapping the solar neighborhood

Distance Modulus μ (mag)

Mapping the solar neighborhood

Target list of lines of sight

not only cloud, but also bridges in between

View of Radcliffe Wave

3D interacitve plot

$$
\Delta z(t)=A \times \exp \left[-\delta\left(\frac{d(t)}{\mathrm{kpc}}\right)^{2}\right] \times \sin \left[\left(\frac{2 \pi d(t)}{P}\right)\left(1+\frac{d(t) / d_{\max }}{\gamma}\right)+\phi\right]
$$

View of Radcliffe Wave

3D interacitve plot

15

Position-velocity diagram

Galactic Longitude (${ }^{\circ}$)

Position-velocity diagram

Galactic Longitude (${ }^{\circ}$)

meet the quasi-linear arrangement

Position-velocity diagram

Galactic Longitude (${ }^{\circ}$)

"universal" Galactic rotation curve

Position-velocity diagram

Galactic Longitude (${ }^{\circ}$)

Radcliffe Wave is kinematically coherent

Comments

- For this moment, the Radcliffe wave model is not necessary and/or able to fully rule out the Gould's Belt hypothesis.
- More quantifying kinematical analysis may help us to better understand the wave structure
- For example, is the vertical librating true?
- New Gaia data release may learn us a revolutionary picture about our solar neighborhood

Summary

- A narrow and both spatially and kinematically coherent wave-like 2.7 kpc arrangement of dense gas is find
- The prevailing view of the local ISM based on the peculiarity known as the Gould's Belt need to be updated

Potential questions

- Formation theory of the Radcliffe wave
- Can it explain all of side effects associated with Gould's Belt as well?
- How to explain the "Split" on the other side?
-What do we expect for larger scales?
- How will it influence our understanding about star formation?

Formation of Radcliffe wave

- Too large and too straight to be the feedback of a previous generation of massive stars
- Outcome of a large-scale Galactic process of gas accumulation
- a shock front in a spiral arm
- gravitational settling and cooling on the MW plane

Formation of Radcliffe wave

A minimum-hypothesis explanation for the "Radcliffe Wave":

Robert Fleck
2020Natur.583E..24F

Formation of Radcliffe wave

> A minimum-hypothesis explanation for the "Radcliffe Wave": KH instability

Robert Fleck
2020Natur.583E..24F

Formation of Radcliffe wave

A KH instability rendered visible by clouds, known as fluctus

A KH instability on the planet Saturn, formed at the interaction of two bands of the planet's atmosphere

Credit: Wikipedia Kelvin-Helmholtz instability

