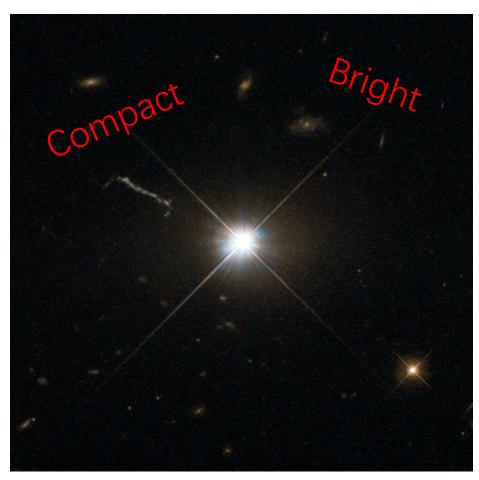
Change-Look AGN as a Challenger of AGN united model

Tao Jing

2021.11.12


Outline

• AGN

AGN united model

Change-look AGN as a challenger

What is AGN?

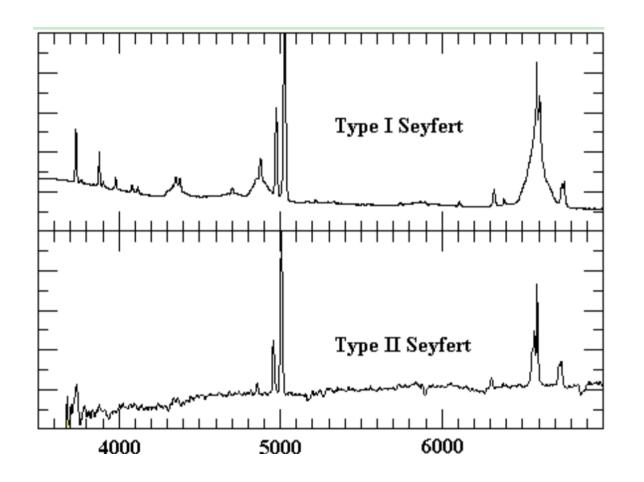
Ha line Rest frame wavelength of Ha 20 6000 8000 4000 Observed wavelength [Å]

3C 273

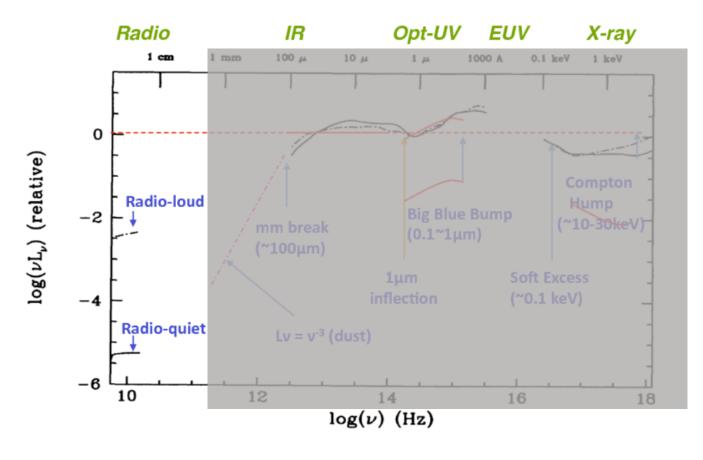
What is AGN?

Active Galactic Nuclei

• A compact region at the center of a galaxy that has a much-


higher-than-normal luminosity, which can not be totally

produced by stars.


There are so many kinds of AGN

- We have seen Quasar, Center of active galaxy, they are very different in image.
- Some of them can only be separated by spectrum.
 - With broad line: Type I
 - Without broad line: Type II

There are so many kinds of AGN

- We have seen Quasar, Center of active galaxy, they are very different in image.
- Some of them can only be separated by spectrum.
- Some of them can only be separated by multiband observation:
 - Radio loud
 - Radio quiet

Elvis et al., 1994, ApJS, 95, 1

There are so many kinds of AGN

Class/Acronym	Meaning	Main properties/reference
Quasar	Quasi-stellar radio source (originally)	Radio detection no longer required
Sey1	Seyfert 1	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$
Sey2	Seyfert 2	$FWHM \lesssim 1,000 \text{ km s}^{-1}$
QSO	Quasi-stellar object	Quasar-like, non-radio source
QSO2	Quasi-stellar object 2	High power Sey2
RQ AGN	Radio-quiet AGN	see ref. 1
RL AGN	Radio-loud AGN	see ref. 1
Jetted AGN		with strong relativistic jets; see ref. 1
Non-jetted AGN		without strong relativistic jets; see ref. 1
Type 1		Sey1 and quasars
Type 2		Sey2 and QSO2
FR I	Fanaroff-Riley class I radio source	radio core-brightened (ref. 2)
FR II	Fanaroff-Riley class II radio source	radio edge-brightened (ref. 2)
BL Lac	BL Lacertae object	see ref. 3
Blazar	BL Lac and quasar	BL Lacs and FSRQs
BAL	Broad absorption line (quasar)	ref. 4
BLO	Broad-line object	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$
BLAGN	Broad-line AGN	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$
BLRG	Broad-line radio galaxy	RL Sey1
CDQ	Core-dominated quasar	RL AGN, $f_{core} \ge f_{ext}$ (same as FSRQ)
CSS	Compact steep spectrum radio source	core dominated, $\alpha_r > 0.5$
CT	Compton-thick	$N_{\rm H} \ge 1.5 \times 10^{24} \rm cm^{-2}$
FR 0	Fanaroff-Riley class 0 radio source	ref. 5
FSRQ	Flat-spectrum radio quasar	RL AGN, $\alpha_r \leq 0.5$
GPS	Gigahertz-peaked radio source	see ref. 6
HBL/HSP	High-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} \ge 10^{15} \text{ Hz (ref. 7)}$
HEG	High-excitation galaxy	ref. 8
HPQ	High polarization quasar	$P_{\text{opt}} \ge 3\%$ (same as FSRQ)
Jet-mode		$L_{kin} \gg L_{rad}$ (same as LERG); see ref. 9
IBL/ISP	Intermediate-energy cutoff BL Lac/blazar	$10^{14} \le \nu_{\text{synch peak}} \le 10^{15} \text{ Hz (ref. 7)}$
LINER	Low-ionization nuclear emission-line regions	see ref. 9
LLAGN	Low-luminosity AGN	see ref. 10
LBL/LSP	Low-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} < 10^{14} \text{ Hz (ref. 7)}$
LDQ	Lobe-dominated quasar	RL AGN, $f_{core} < f_{ext}$
LEG	Low-excitation galaxy	ref. 8
LPQ	Low polarization quasar	$P_{\text{opt}} < 3\%$
NLAGN	Narrow-line AGN	$FWHM \lesssim 1,000 \text{ km s}^{-1}$
NLRG	Narrow-line radio galaxy	RL Sey2
NLS1	Narrow-line Seyfert 1	ref. 11
OVV	Optically violently variable (quasar)	(same as FSRQ)
Population A		ref. 12
Population B		ref. 12
Radiative-mode		Seyferts and quasars; see ref. 9
RBL	Radio-selected BL Lac	BL Lac selected in the radio band
Sey1.5	Seyfert 1.5	ref. 13
Sey1.8	Seyfert 1.8	ref. 13
Sey1.9	Seyfert 1.9	ref. 13
SSRQ	Steep-spectrum radio quasar	RL AGN, $\alpha_r > 0.5$
USS	Ultra-steep spectrum source	RL AGN, $\alpha_r > 1.0$
XBL	X-ray-selected BL Lac	BL Lac selected in the X-ray band
XBONG	X-ray bright optically normal galaxy	AGN only in the X-ray band/weak lined AGN

If you are interested in AGN zoo, please check the review: *Active galactic nuclei: what's in a name? (P. Padovan + 2017)*

AGN United Model

Dust torus

 Scientists are always trying to find simple models for complex phenomena

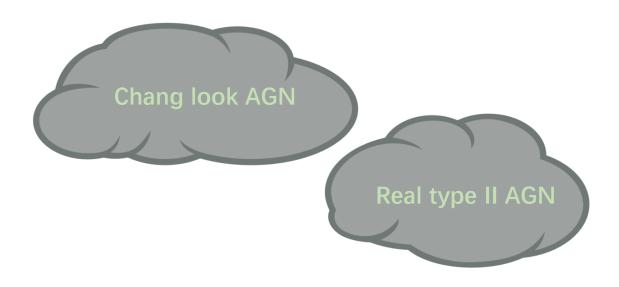
 We have an united model for all kinds of AGNs

Radio Loud Jet NLRG Sey 2

Narrow line region: ionized gas with low rotation velocity

Board line region: ionized gas with high rotation velocity

AGN United Model

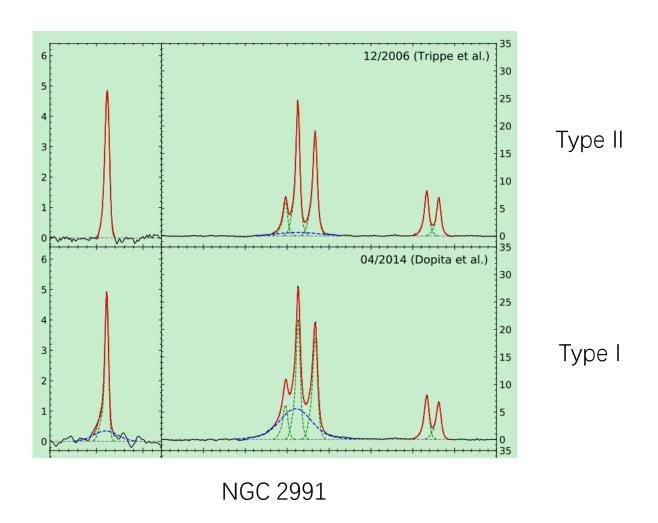

- Scientists are always trying to find simple models for complex phenomena
- We have an united model for all kinds AGNs

With board line BLRG Sey 2 Radio Quiet

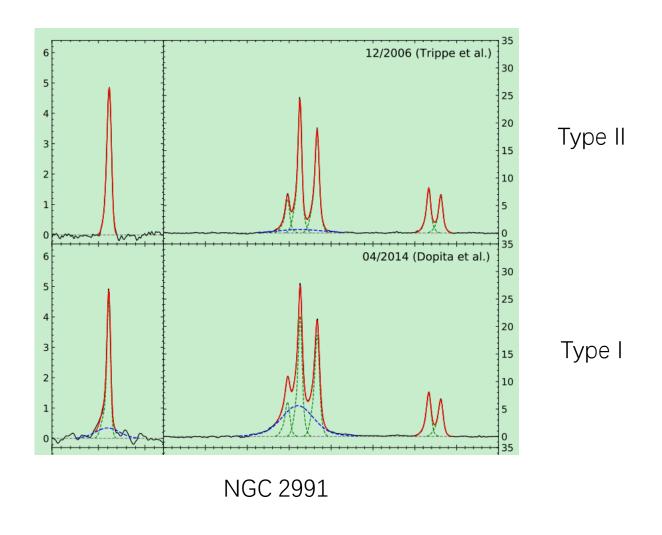
Radio loud Radio quiet Without

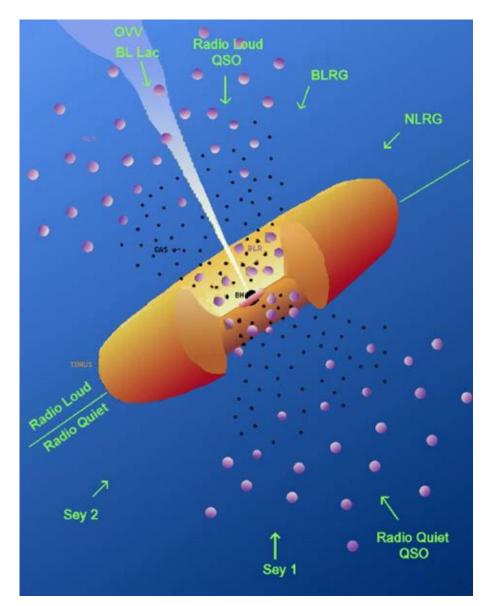
board line

There are (at least) two dark clouds on the sky

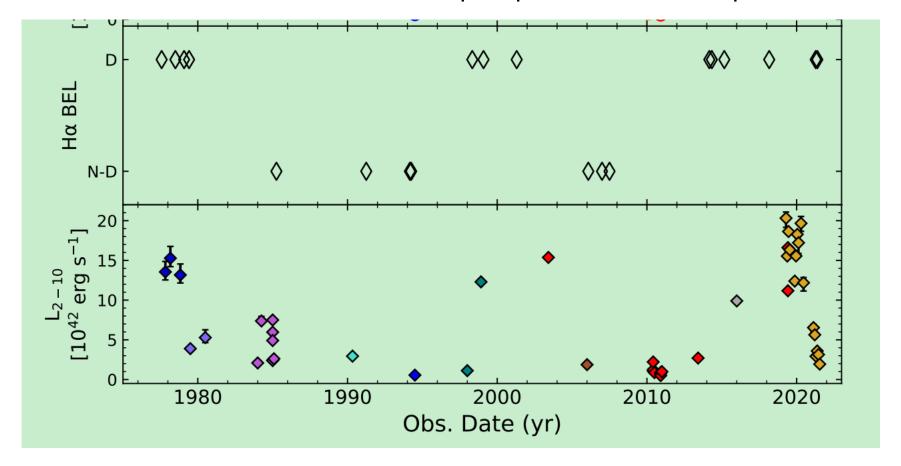


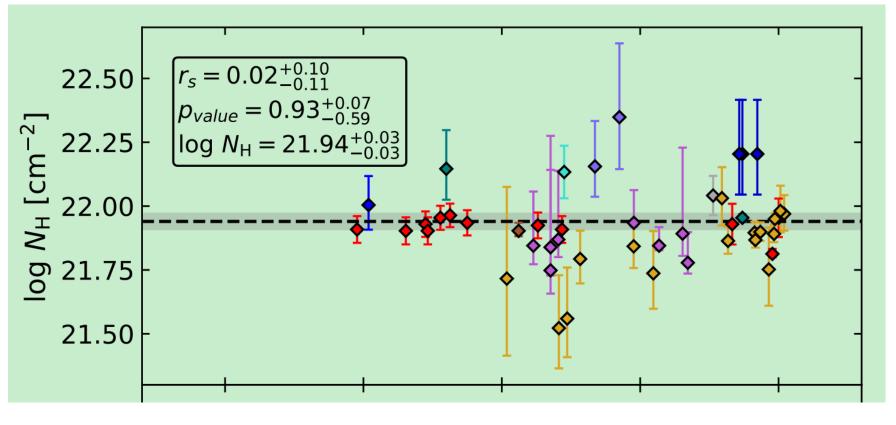
Take home messages


- Some of the change-look AGNs is hard to be explained under the united model
- An accretion mode related model could explain this kind of AGN

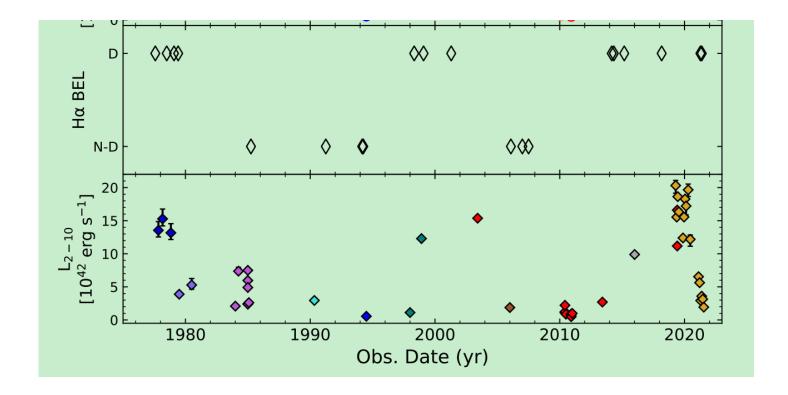

The Eddington ratio-dependent changing look events in NGC 2992 Muryel Guolo et. al. 2021

Change-look (变脸) AGN

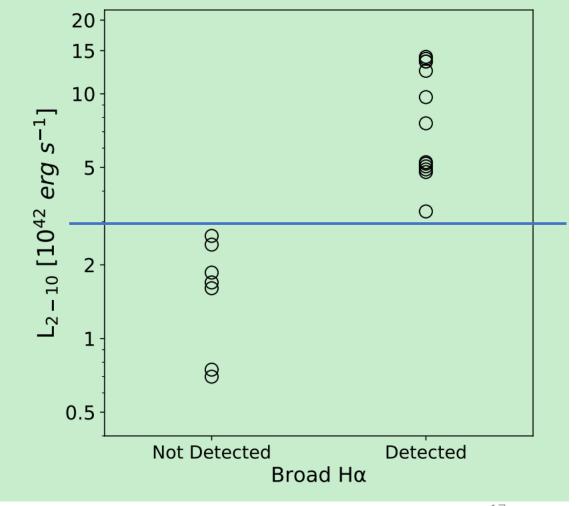

Change-look (变脸) AGN


We need a new model...

• but wait, let's see observational properties for inspiration


We need a new model

Rotation of clumpy dust in torus?


We need a new model

- Tidal Disruption Event (TDE)?
 - No, or we need 3 TDEs in 40 years

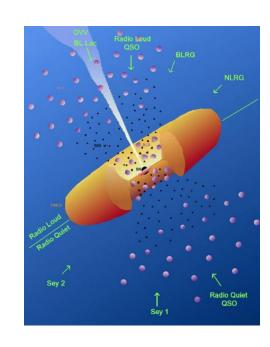
We need a new model

- The transition of accretion state
 - We have a critical value for type I and type II
 - This value is about 1% of Eddington ratio, which is the critical value between radiatively inefficient accretion flow and a thin accretion disk

The transition of accretion mode, so?

Radiatively inefficient accretion flow

- The dimming (brightening) of the AGN continuum luminosity, so no photons to ionize board line region.
- Cloud flow rate is too low to sustain board line region.


• These two scenarios can be separated by polarization observation according to simulation.

My comments

- The classical united model does not always work, but how about accretion rate related model?
 - There is no the accretion rate version of united model up to now.
- How about other change-look AGNs? All of them have same properties of this one?
- One model multi observations?

Summary

- There are so many kinds of AGNs in observation
- We have an united model for the majority of AGNs
- Chang-look AGN is a challenger of this united model
- Chang-look AGN NGC 2991 prefers an accretion mode transition model

Questions

How about the mass of this AGN?

$M_{ m BH}$	Method	References
$5.2 \times 10^7 \text{ M}_{\odot}$	$ m M_{BH}$ - σ_* (Tremaine et al. 2002)	Woo & Urry (2002) $(\sigma_* = 158 \text{ km s}^{-1})$
$4.8^{+3.9}_{-2.4} \times 10^7 \text{ M}_{\odot}$	$ m M_{BH}$ - σ_* (Gültekin et al. 2009)	Nelson & Whittle (1995) ($\sigma_* = 158 \pm 13 \text{ km s}^{-1}$)
$3.0^{+5.5}_{-1.5} \times 10^7 \mathrm{~M}_{\odot}$	σ_{rms}^2 - M _{BH} (Ponti et al. 2012)	Marinucci et al. (2020)
1 2+1.5 × 107 M		This Work
$1.2^{+1.5}_{-0.7} \times 10^7 \mathrm{\ M_{\odot}}$		(2006 spectra)
$1.3^{+3.8}_{-1.0} \times 10^7 \mathrm{\ M_{\odot}}$	$ m M_{SE}(\sigma_{Heta},L_{Heta})$ (Dalla Bontà et al. 2020)	This Work
1.5 _{-1.0} × 10 141 ₀		(2014 spectra)
$3.5^{+9.1}_{-2.5} \times 10^7 \text{ M}_{\odot}$		This Work
-2.5 110 1110		(2015 spectra)
$2.4^{+3.2}_{-1.4} \times 10^7 \mathrm{M}_{\odot}$		This Work
-1.4		(2018 spectra)
$2.5^{+2.7}_{-1.3} \times 10^7 \mathrm{M}_{\odot}$		This Work
-1.5		(03/2021 spectra)
$2.2^{+2.3}_{-1.1} \times 10^7 \mathrm{M}_{\odot}$		This Work
-1.1		(04/2021 spectra)

Questions

- Why does polarization observation distinguish these two models?
 - If BLR itself vanishes, the photon will not pass through these gas, it will change the property of polarization.
- Where does jet com from?
 - Not very clearly up to now, the big picture is that the magnetic field could extract rotation energy of BH or accretion disk to form jet.
- Why we believe the SMBH is the engine of AGN?
 - No other choices