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Outline

e Background: Observational discovery of radius valley
e T[heoretical models: photoevaporation, core-powered
e Observational evidences of two models

e Other models for radius valley



Background

Observational Discovery of Radius Valley

Xiaoyi Ma
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Outline

e Planetary system formation

e Kepler mission

e What is radius valley?

e Keys of its discovery:

- Theoretical prediction

- Observational discovery

e Relation with stellar mass and orbital period



Take-home message

The IS a region of low occurrence rate for
close-in exoplanets at planet radii ~ 2 R_, which its

position is decreasing with orbital period and increasing
with stellar mass.



How does planetary system form?
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Kepler Mission

e NASA Kepler mission is launched in 2009 to
discover , which leads many
remarkable discoveries of planetary systems.

° enabled the detections of the planets as
the small as Mercury and confirmed the prevalence of
planets smaller than Neptune.

IS spectroscopic survey to _,
measure the properties of Kepler planets and their host P\
stars. Its motivation is to reduce the uncertainty in the
size of Kepler planet and star.

Petigura et al. (2017)



What is radius valley?
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Theoretical Prediction
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CKS spectroscopy --- Sampling

With the stellar sample from CKS spectroscopy, they achieved the median
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Number of Planets

CKS spectroscopy --- Completeness Correction
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CKS spectroscopy --- Radius gap

Low completeness
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Gaia DR2 parallaxes --- Radius valley
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Planet Size [Earth radii]

Gap or Valley?
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Planets reside between 1.5-2.0Re® are due to measurement uncertainty alone
(gap) or intrinsic spread of super-Earth and sub-Neptune (valley)?

Real detections

Assign new radius
according to
uniform distribution

for super-Earth or
sub-Neptune
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Stellar mass and period relation
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Fulton & Petigura (2018) 16

Backup 2 --- How to derive stellar radius?

The stellar radius derived from the Stefan-Boltzmann law:

Lo10~0-4Mbol 1/2
R* —

Aoy Tee My =m—A—p+BC

Therefore, the stellar radius is determined by:
e Apparent magnitude m
e Effective temperature 1,
e Line-of-sight extinction A 3D dust map (Green et al. 2018)

e Distance modulus M

e Bolometric correction BC Isoclassify package (Huber et al. 2017)



Backup 3 --- Problem of IDEM approach

o

o

©
T

0.00

Number of Planets per Star
(Orbital period < 100 days)
3

|

H ]

typical
uncert. -]

Hi‘ -y Iﬁu—-

0.7 1013 1.8 24 3545 6.0 8.0 120

Planet Size [Earth radii]

20.0

4.0

17

(9.h)=(0,0)

b
%]

[ (g, h)=(-0.09,0.26)

(3 <P/day<30)
= N N w
n o wu o

e
o
T

Number of planets per 100 stars

1.4

~

2 2.4 3 4
Rescaled radius R, (Ro)

Possible reason: The IDEM approach Fulton (2017,2018) used to calculated the number of planets
per star tends to underestimate the occurrence rate for small planets due to its low sensitivity (survey
detection efficiency).

Inverse detectivity

efficiency method
(used by Fulton)

_IDEM __

p

1\ Maximum FML _
-/ likelihood -
(used by Zhu)
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(Zhu & Dong, 2021)



Photoevaporation

The pillar structure in
Eagle nebula believed to
be photoevaporated by
nearby massive stars.

A potential PPD being
violently stripped by
nearby O-type star in the
star forming cloud IC

Small St_ar wiph
Evaporating Disk  Hot Massive Star

0.5 Light Year

Spitzer telecope, NASA

dustdisk

photoevaporative
} gap formation / /y

Photoevaporation causes disk dispersal within a
typical time ~ 10Myrs

volatile loss
in partially
ionized wind

few Myr

At

Accreting
transitional disk

Light molecules being evaporated by
high energy photons.



Photoevaporation

In the context of planetary
atmosphere,

Atmosphere
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High energy photons accelerate molecules,
helping overcome planetary binding energy.

Generally, photoevaporation is mostly efficient for
the first ~100 Myrs b/o the star is young and
active.

Erosion timescale:
tX — X/X — Menv/Ménv

X : envelope mass fraction

M., : photoevaporation rate



Take Home Message 1
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Self-gravity
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0.01 1.0 >

Planets (Hot Jupiter) with very heavy atmosphere don't suffer from
photoevaporation b/o the very deep gravitational well;

Planets (super earth) with thin atmosphere could be stripped bare
considering low separation of Kepler samples, which leads to the first
peak on radius distribution.

Planets (sub-Neptune) with H/He-rich envelopes that double its radius
have the locally maximum envelope erosion timescale, which leads to
the second peak on radius distribution.

Atmospheric mass fraction Owen, ARAA, 2079



Erosion Timescale

The key is to relate the erosion timescale with planetary
envelope size given certain parameters (planet core mass,
composition; star mass).

X = Mepy/ M, = X(AR)

Envelope mass is related to core mass (radius) by 1D
modeling of planetary atmosphere.

« mass conservation

« hydrostatic balance

« luminosity equation (opacity law, KH contraction)
« equation of state

« planet density/composition assumption...

X - M‘;nv/Mp - X(LHEa a')

Evaporation rate is primarily related to High energy photon
luminosity and planet separation from star.

____-— .....
- -~
- ~

convective layer

Y

1

1
: oo p— i y
e R '
: (IS \ { IR(R ) : !
¥V (ORI () () ) ¥ ;
: : ]
]

]

’

-
- -

Photospheric radius
©Chris Ormel



Erosion Timescale
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To understand the trend:

‘ .

Stripping regime (thin atmosphere):

Planet radii dominated by core radius -> losing mass
causes the binding energy to decrease at surface ->
continuous stripping of envelope.

sity decrease
ponentially

Expansion regime (puff-up atmosphere):

Planet radii swells up so fast ->facing much more HE
flux -> net mass loss



Evaporation Valley

From single planet to a CKS sample:
Consider a group of planets spanning the typical
parameter space of Kepler planets,

A demonstration on how radius valley emerges

Planet Radius [R.]
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Evaporation Valley

1D distribution
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Core-powered Mass Loss

Tc ~ Tatm(Rc)

Besides luminosity from the sun, core itself cools down
and radiates energy out. The energy available is,

| ~1
Ecool — gAR(_TLMatm %%%Mc)a

Atmosphere/ Core energy resevior

The energy needed to boil off whole atmosphere is,

Eloss ~ GMcMatm/Rc — Matngc-

Two ratio here is important:

ECOT‘B l—l’ MC

m~

Eatm He M, atm
Eatm AR




Core-powered Mass Loss

Bifurcation point:

1. Heavy atmosphere

>1
Ecme ~ i Mc Tcool v- S-
Eatm He Matm
<1 .
2. Thin atmosphere
envelope contraction mass loss
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Take Home Message 2

envelope contraction ZR mass loss
= Planets (super earth) with core luminosity dominating the
AR/R, <1 AR/R. ~ 1 AR/R. > 1 cooling process can blow off its thin envelope, which
E,, AR ool corresponds to the first peak on radius distribution.
atm COO
E TR, T , o
n loss < loss Planets (sub-Neptune) with envelope luminosity

dominating the cooling process contract, which shepherd
runaway mass loss
R,

M 'ts radius to the second peak, and stay intact.
AR/R. <1 AR/R, ~ 1 AR/R.> 1

E core AR Teool

~ ~J

Eloss Matm Tloss
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Stellar Mass Dependence: Born to be or Evolutive?

Photoevaporation

The total High-energy flux received by a planet for
initial ~100Myrs is not observationally accessible
for individual planet. (Our earth is >4Gyrs old)

Thus it is severely model-dependent...

Instead, Wu 2019 suggests an intrinsic planet-Star
mass relation to explain the observed valley
position shift with varied stellar mass.
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Wu, ApJ, 2019 scaled planet Radius (with star mass)
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Stellar Mass Dependence: Born to be?

Photoevaporation

Kepler planets follow its thermal mass( H ~ Rz )?

pebble being trapped
outside the gap

8 al flows aps
Mend\o‘lpread of 92° e
\/iscous

/

Planet-driven flows
Planet opening a gap in the gas

~4 Hill radii

Armitage & Rice, 2005 Teague et al, 2019

The estimated a for thermal mass is ~ 1.375, lying in the region suggested by observations.



Stellar Mass Dependence: Evolutive?

Core—powered mass loss The mass losing rate is limited by material supply by
o= .. shrink for higher Teq hydro flow. B
P e N ~\‘~‘ |Matm| < Ma,tm = 47TR2BP(RB)687

Z g hydro outflow (speed ~¢; ) B -
SO -TaN Y, M, = 4mReuprapap(~£5).
£ <j 1

| O | | L

\ - e c Hily

N\\ """"""""""""" /% Higher stellar mass -> Higher T _eq -> Higher mass

A R d losing rate -> the valley shifts to larger radius.
Diskgas "t~ _____ -
Bondi radius dlog R, .
dlog M,
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Other Parameters

2. stellar metallicity

Core-powered mass loss

influence the opacity of envelope -> energy losing

efficiency( Tk H ) of sub-Neptunes.

Photoevaporation

negligible

Model: CKS stellar distribution Observations
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3. stellar age dependence

Both

operation timescale:
>Gyrs v.s. 100Myrs

More sub-Neptunes become super earths with the

characteristic timescale.
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Implications on core composition

Sampling results for different core composition assumptions

dN/dlog R

Owen & Wu, ApJ, 2017

-> Earth-like composition for CKS sample

If we know the composition of different
groups precisely, we can imply planet mass
from its radius measurements.
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Summary

« Both photoevaporation model (Owen & Wu, 2017) and core-powered mass loss model (Ginzburg et al, 2018) can
explain the observed valley at ~ 2 earth radius from CKS data.
« The two models vary from many aspects, implying further observation practices to distinguish them,
« Correlations between planet and stellar mass.
« Slope of the radius valley as a function of stellar mass (or luminosity).
« Relative abundance of super-Earths and sub-Neptunes as a function of age.

« Planets in the gap.
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Observational evidences of the two models
Xiao LI Advisor: Wei Zhu

Collaborators: Xiaoyi Ma, Yu Wang, Zhaoning Liu
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Outline

The dependence of planet radius distribution on

o Stellar age

o Stellar mass
e Orbital period
* |Insolation

 Metallicity
Summary



Planet radius distribution as a function of stellar age
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Planet radius distribution as a function of age

Young > Old
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Large uncertainties

Isochrone age

In the stellar age estimation
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Dependence on stellar mass

 Photoevaporation

- More relevant to XUV incident flux, which is stronger around lower-mass stars
- The population of sub-Neptunes should shift to lower insolation with decrease stellar

1.0
Mass 3 — M, >1.11Mp
0 .97 M < M, <1.11M;
N 0.8 Hmm= M, <0.97M,
» Core-powered mass loss e -
= 06 |1 7<R-<4Re
- Relevant to the bolometric incident stellar flux £ 30< Sine < 300059
- No dependence of the planet "Tal 04
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Dependence on stellar mass

. dlogR
. The slope is ==
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Sun-like stars

planet radius - orbital period
A negative correlation
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The location of the radius valley as a function of insolation

* For sun-like stars, both photoevaporation and core-powered mass loss can predict this
relation well consistent with observations

 For M-dwarfs, the gas-poor formation model may play a role

* It’ll be interesting to examine the relation between planet radius and XUV flux
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Dependence on metallicity

* |n core-powered mass loss model, a planet

around a metal-poor star has lower
atmospheric opacity and thus loses its
energy on a shorter timescale

—> sub-Neptunes will be larger around

higher metallicity stars (at a fixed age)
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Planets in the gap

e Planet radius measurements with
~5% precision

H

typical

uncert.

 The gap Is not completely devoid
of planets

* Consistent with core-powered
mass loss due to its Gyr timescale

Number of Planets per Star
(Orbital period < 100 days)

e Intrinsic Spread of the two | 0.7 1013 18 24 3545 6.0 80 120 20.0
populations 2 Planet Size [Earth radii]

Fulton & Petigura 2018



Summary

e Core-powered mass loss has relatively strong observation support, while

photoevaporation needs more observations of young planets to be better examined.

 \We need more planets observations
- planets around stars with ages of ~ 100 Myr

- planets around stars of different types

Bt~ ok edes DR 2 - I N S T~
> or—p -, - >y . o . PRI . . e

i How close-in small planets around different type of
stars evolve In their lifetime
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Partd: Alternative explanations
for radius-valley

pUE - Liu Zhaoning



POSS| b‘e exp‘a ﬂaUOﬂS Photoevaporation

Core-powered mass loss

mass loss
Giant impact
(Matsumoto et al. 2021)

Extra-solar photoevaporation

Radius Vall
adius valley (Kruijssen et al. 2020)

Gas-poor formation

(Lee & Connors. 2021)

formation
Gas-empty formation, usually called gas-poor

(Lopez & Rice. 2018)



lmpact erosion model

Setting up solid surface density distribution of
cores and envelop fractions

5 = 21(

a

—Pinit
) Xinit = Xenv/Mc

1 au

* N-body simulation for envelope mass loss by
giant impact shock waves

Photoevaporation

Fraction

W TRy Lxyv
XUV = “PE 402G My Kae

0.00-
0.5



Extra-solar photo-evaporation model

Sub-neptunes appears only in the low star density environment.
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Kruijssen et al. 2018
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(Gas-empty formation theory

» If these planets took 10 Myr to finish assembling, their proto-planetary gas discs would
have already dissipated by that point. The rocky and non-rocky exoplanets are two
separate populations originating from different formation timescales.

* The maximum size of rocky planets 1s determined by the available supply of solid
materials that a planetary core can accrete by collisions.

0.6 7—0.5 0.16 1y —0.14
My max X X1y X a”°Mg Rirans X a~ " Mg

Photo- Core-powered  Impact erosion Gas-empty
evaporation formation

dlogR,/ dlogF 0.11 0.10 0.05 -0.08



Planet radius [R ]
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(Gas-empty formation theory
M-dwart Stars Observation
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Gas-empty formation theory
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Need for multi-physics scenario

Photo- Core- Impact Extra-solar  Gas-poor  Gas-empty
evaporation  powered erosion photo- formation  formation
mass loss mass loss mass loss  evaporation

Orbit period ? X X?
Stellar mass ? ? X
Stellar age X? ? ? ? ? X

Phase-space X X X X X

density



summary

* There are many alternative explanations for radius valley, other than
the photo-evaporation and core-powered mass loss model.

* Models like the gas-empty formation model doesn’t work in the sun-
like stars, but the scenario may contribute in the very low-mass stars.

* There 1s more or less inconsistency between the observations and each
individual model. Multi-physics model is needed for future research.



