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Protoplanetary disk

 Protoplanetary disk:

« disk of dense gas and dust surrounding a
young newly formed star

A protoplanetary disc has formed around
the young star HL Tau (Webb 2014)
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Disk structure

Emission lines (e.g., CO) Atmosphere

, gas + small dust grains
\IRscattered light l\/—\

(Sub-)mm/cm continuum Midplane
(+ optically thin lines; e.g., C'80) gas + larger solids

A diagram of a disk structure viewed in cross-section. The gas is denoted in grayscale, and solids are marked with
exaggerated sizes and colors. (Andrews 2020)
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Infrared (IR) scattered light

Emission lines (e.g., CO) Atmosphere

gas + small dust grains

(Sub-)mm/cm continuum Midplane
(+ optically thin lines; e.g., C'80) gas + larger solids

* The host star (protostar): By shrinking, convert the gravitational potential energy into radiation
emission (optical and infrared)

* Small (~micrometer-sized) dust gr?ins: IweII coupledI to gas, scattering the radiation emitted by
The spiral structures in protoplanetary disks
the host star. ’ e !



(sub-)mm/cm continum

Emission lines (e.g., CO) Atmosphere

, gas + small dust grains
\IRscattered light /—\

(Sub-)mm/cm continuum Midplane
(+ optically thin lines; e.g., C'80) gas + larger solids

e Large solids: thermal continuum (A = 1 um — 1 cm). Tracing surface density variations in the
midplane
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Disk compared in different tracers

A Scattered light b Thermal continuum C Spectral line emission

[t a
$ gt

The morphology of the TW Hya disk is compared in three different tracers: (a) A = 1.6-um scattered light from small dust grains (van Boekel et
al. 2017), (b) A = 0.9-mm continuum from pebble-sized particles (Andrews et al. 2016), and (c) the CO J = 3-2 spectral line emission tracing the

molecular gas (Huang et al. 2018a). (Andrews 2020)
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Protoplanetary disk

Mar. 2015

* Differential polarimetric imaging (DPI)

e spiral substructures are observed in a few
protoplanetary disks
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MWC 758 Polarized intensity
image (4 (Benisty et al. 2015)
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Differential polarimetric imaging
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Left: MWC 758 polarized intensity images (Qy), East is toward the left. Right: radial map of the deprojected Q4 image using
i = 21° and PA = 65°. The dashed line indicates a radius of 0.23"" (Benisty et al. 2015).
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Millimeter continuum emission observations

» Millimeter continuum emission:
« Tracing surface density variations in the midplane

Emission lines (e.g., CO) Atmosphere

gas +small dust grains ~_——

(Sub-)mm/cm continuum Midplane
(+ optically thin lines; e.g., C'30) gas + larger solids
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Millimeter continuum emission images
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Top: ALMA 1.25 mm continuum images of the Elias 27, IM Lup, and WaOph 6 disks.
Bottom: the continuum emission deprojected and replotted as a function of disk radius and polar angle (Huang et al®2018).



Millimeter continuum emission images

0.0 0.1 02 04 0.00 0.05 0.10 0.20 0.0 0.2 04 0.8

Al, (m)y beam™1) Al, (m)y beam™1) Al, (m)y beam=1)

Polar angle (deg)
o

0 50 100 150 200 250 0 50 100 150 200 250 0 25 50 75 100
Radius (au)

Top: residual emission after subtracting the median radial intensity profile. White stars mark the continuum emission peaks.

Dotted ellipses correspond gaps, Solid ellipses correspond to bright rings.
Bottom: residual emission replotted as a function of disk radius and polar angle (Huang et al. 2018).



Elias 27
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Possible Origins of Spiral Structure

- Spiral arms induced by a perturber

« Stellar and planetary companions are expected to trigger spiral
density waves in protoplanetary disks.

« The massive objects could be directly imaged in the near-infrared.



Possible Origins of Spiral Structure

« Gravitational Instability (GI)
« Large and cold disk: conditions for triggering GI

« GI: symmetric, logarithmic spiral arms,

« companions: spiral arms with variable pitch angles

The spiral structures in protoplanetary disks
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Summary

 The spiral structures in protoplanetary disks have been
mapped scattered-light observations and millimeter
continuum emission

» The two ways above trace different regions of the disks,
and their maps may be quite different

 There are some explanations for the origin of spirals,
mainly spiral density waves and gravitational instability
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Two Possible Ways of the Formation
of Spiral Structures

Name: Jiahui Huang
2022.06.10
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Observational Signatures 144 R R

Department of Astronomy, Tsinghua University

» Circumstellar disk provides initial and boundary conditions for planet formation

» High angular resolution near-IR imaging shows spiral-arm-like features in PP-disks

0.018
0.016
0.014
0.012
0.01
8x10™°

(woaq/4p)

DEC offset [mas]

6x10~>
4x10™°

2x107°

16"26™45%2  45%.1 450 44°9
i . 600 400 200 0 =200 -400 -600
J2000 Right Ascension RA offset [mas)

Elias 2-27 MWC 758
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Two Ways of Formation y
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» Material spiral arms of gravitational instability

CsK
TG

» Condition: Unstable disks where Toomre’s Q parameter is low Q =

» Problem: The material arms wind up and disappear
» Density waves excited by unseen planets
» Problem: The density wave is too small to be visible; need 2 companian

» Hydro simulations can help us to understand the way of their formation

The spiral structures in protoplanetary disks 18



Resistive MHD Simulation
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Tomida et al. 2017
> The disk mass and radius increases

» The spiral arms form repeatedly as radius

19



Spiral Arm of Gravitational Instabi_ .,
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Spiral Arm of GraV|tat|onaI Instabi
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disk stabilizes, Q value increases

» The oscillation explains the wind-up problem

The spiral structures in protoplanetary disks 21



06"
0.018
0.016
or
c 0.014
[+]
3 o
(8 08" 0.012 E
o 0.01 e
. . 2 3 .
simulation & 8x1073 Elias 2-27
GXIO'_"
-3
~24°23'10" 4x10
2x10~°
16"26™45%2 451 45°.0 449 16"26™M45%2  45°.1 450 449 ;
4 Tomida et al. 2017

J2000 Right Ascension J2000 Right Ascension

»The disk size, brightness and thickness of spiral arms are consistent
» Gap like structures may be explained by the low-density region

between spiral arms



Two Ways of Formation y
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» Material spiral arms of gravitational instability

CsK
TG

» Condition: Unstable disks where Toomre’s Q parameter is low Q =

» Problem: The material arms wind up and disappear
» Density waves excited by unseen planets
» Problem: The density wave is too small to be visible; need 2 companian

» Hydro simulations can help us to understand the way of their formation
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Outer Arms
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»The outer spiral arm of

” 1M] is not traceable in
the simulated H band
" image

-100

Dong et al. 2015
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Outer Arms 4414 R 7
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Dong et al. 2015
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Outer Arms
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» 2 planets needed
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Density Structure 1 F 44 FxE
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» Two arms shifted by 180°, inner arm
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11SO125
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Inner Arms vs. Observation M
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observation x oo § i MWC 758

e o i ' s e < o e ‘."'qu. -v\:l‘ [mas - e o e Dong et aI. 2015

» Both have rough m=2 symmetry
» Both have pitch angle 10-15°
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Summary (take-home message)

» The gravitational instability can form material spiral arms in PP-disk

» The material spiral arms will wind up and disappear after several thermal
timescales, but will show up repeatedly

»Inner density wave of far away giant planet will form visible spiral arms in
PP-disk

» Outer density wave of small planet will not be visible, and the outer

density wave of giant planet may explain the ring structure

The spiral structures in protoplanetary disks 30
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Origin of spirals in PPD III:

Distinguish two models via
pattern speed

Speaker: Tao Jing
Groupmates: Jiahui Huang, Changxing Zhou
Advisor: Prof. Bai



Take home message

« The measurement of pattern speed of spiral in MWC 758
(Ren et al. 2020) and SAO 206462 (Xie et al. 2021) prefer

the companions induced spiral model.



Outline

« How to measure the spiral arm pattern speed, and how

to select the models based on this measurement?
» The limitation and the systematics of current results.

» The next to do, larger sample and new method.



Gravitational instability vs. Companion
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Both of these two models are designed for one-snapshot observational results. It is hard
to distinguish them by such observation.
So we need test these two models by measuring pattern speed of the spiral arm.

Ieft, Tomida et al. 2017’ right, Dong et al. 201T9e spiral structures in protoplanetary disks 35



How to measure the spiral arm pattern
speed?

Let’s firstly think about how to measure the rotation speed of the spinning top (FE12)?

Ly >
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D =
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How to measure the spiral arm pattern

speed?

Surface Brightness x (r/0”5)?
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Ren et al. 2020 The spiral structures in protoplanetary disks

Challenges:
* The central star is too
bright
 Coronagraph +
polarization
* The rotation is not
significant for eyes
* Fitting
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How to measure the spiral arm pattern
speed?
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It is better to deal with the rotation in polar coordinates
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How to select the models based on this
measurement?

- Gravitational instability case
3
AO X 1r 2

« Companion case
Af < const.

 The pattern of spiral arm is fitted by p-degree polynomials



How to select the models based on this
measurement?

Related to the mass of central star

- Gravitational instability case
3

3
AB 1 2 to:r = Poly(0),ty:r = Poly (9 — k17”_§)

« Companion case

AO « const. to:r = Poly(0),t:r = Poly(60 — k,)



How to select the models based on this
measurement?

Stellocentric Separation (r)

Ren et al. 2020
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How to select the models based on this
measurement?
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Xie et al. 2021
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The limitation and the systematics of
current results.

« Where are companions?
« Too small samples.

« The spiral arm pattern is not
actually well fitted.



The limitation and the systematics of
current results.

« Where are companions?
« Too small samples.

« The spiral arm pattern is not - |
actually well fitted. $2 @ SAO 206462 $1 @ SAO 206462
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The limitation and the systematics of
current results.

* Where are companions?
* Too small samples.
* The spiral arm pattern is not actually well

* Where are companions?

* Deprojection problem leads to 2

d TOO Sma” SampleS, difference.

* The center of the disk leads to 1 &
difference.

 The spiral arm pattern is not actually gt e s
well fitted.

S2 @ SAO 206462 S1 @ SAO 206462

» Deprojection problem leads to 2 ¢
difference.

« The center of the disk leadsto 1 ¢
difference.

» Flaring of the disk (disk is not flat)
leads to 2 o difference.

m—)
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The limitation and the systematics of
current results.

* Where are companions?

o Where are Companions? 'ﬂttgjpwaarmpa €rn Is not actually we
* Too small samples. S a—
. . difference.

 The spiral arm pattern is not actually g T

well fitted.

S2 @ SAO 206462 S1 @ SAO 206462

» Deprojection problem leads to 2 ¢

difference.
» The center of the disk leads to 1 ¢ h Flat

difference.

r

» Flaring of the disk (disk is not flat)
leads to 2 o difference.

Flare



The next to do, larger sample and new
method. e 758

« Where are companions?

* Direct detection

* Try their best to observe
but no detection up to
now

ADec

« Too small samples

— Best Fit
25T DhivedO®nbit:

=075 -1

* The spiral arm pattern T
speed is not actually well
fltted “Can be detected at 50 level if it is a hot-start planet using four
: half-nights of NIRC2 Ms-band high contrast imaging
observations”
47
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The next to do, larger sample and new
method.

« Where are companions?

« Too small samples
« Hard to extend
« < 200 pc

 No significant shadowing
effect i (mlyobl m0)2 0.4 n (?n?:borlno )o 20 ” (mjyobz mo'): 0.8

) The Splral arm pattern IS 1800 50 100 150 200 250 _150200250 !
not actually well fitted. s o

P0Iar angle (deg)




The next to do, larger sample and new
method.

« Where are companions?

« Too small samples

« The spiral arm pattern is
not actually well fitted.
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Summary

 The pattern speed measurement of spiral arm prefer
companion case in SAO 206462 and MWC 758.

 The results are not very sensitive to deprojection, center of
the disk, and flaring of the disk.

* The more effects should be made in both observation
(detect the planet, extend the sample) and theory (better
simulation) aspects to further understand such spiral arms.



