Technology behind the future science goal: the infrared instrument for JWST

Naihui Chen Yijia Zhang

Content

- Introduction to Infrared science
- Instruments
- Summary

Introduction Part

History of Detector

Infrared light (Herschel, 1800)

Thermopiles detector (Nobili, 1830)

Resistive

Bolometer (Langley, 1880)

4

PE effect detector

Photocathode (RCA, 1942)

History of PE detector

"All physical phenomena in the range of about 0.1–1eV will be proposed for IR detectors"

Absorption on Ground

Space IR Telescope

IRAS (1983)

ISO (1995)

Spitzer (2003)

HST (1990)

8

	Name	IRAS	ISO	Spitzer	HST
	Working year	0.83	3	17	>30
202	Wavelength(μm)	5-100	2.5-240	3-160	0.8-2.4

Targets of JWST

9

Image in IR

Instrument Part

Chen Naihui

Scientific Instruments

Observing modes of scientific instruments

Standard imaging mode of NIRCam

NIRCam

Observing mode	Wavelength coverage (µm)	Field of view [§]	Pixel scale (arcsec/pix)	Notes
Imaging	0.6-2.3	2 × 132" × 132" (44" and 5" gaps)	0.031	FWHM 2 pix at 2.0 µm
	2.4-5.0	2×129"×129" (48" gap)	0.063	FWHM 2 pix at 4.0 µm
Coronagraphic imaging	1.8-2.2 2.8-5.0	20"×20"	0.031 0.063	
Wide field slitless spectroscopy	2.4-5.0	2×129"×129"	0.063	R ~ 1,600 at 4 µm
Time-series imaging	0.6-2.3 2.4-5.0	129" × 129" 132" × 132"	0.031 0.063	
Grism time series	2.4-5.0	129" × 129"	0.063	R ~ 1,600 at 4 µm

Photos of two modules

Two wave length channels

	Short wavelength channel	Long wavelength channel
Wavelength range	0.6-2.3 μm	2.4-5.0 μm
Nyquist wavelength [†]	2.0 µm	4.0 µm
Fields of view	$2\times2.2'\times2.2'$ (with 4"–5" gaps)	2 × 2.2' × 2.2'
Imaging pixels	8 × 2040 × 2040 pixels	2 × 2040 × 2040 pixels
Pixel scale	0.031 "/pixel	0.063 "/pixel

Projected detector plane

Optical layout

Filters

Sensitivity for different filters.

Characteristics of filters for short wavelength channel.

Observation Strategies

Mosaic

•

See large sky regions

- Fill image gaps.
- Compensate bad pixels

. . .

2022/3/18

MOS mode of NIRSpec

Multi-object spectroscopy

MOS		Multi-object spectroscopy with 0.2″-wide mini-slits.		 9 square arcmin. field of view Low spectral resolution (30 to 300), prismbased mode covering the 0.6-5.0 micron range in one exposure. Medium spectral resolution (500 to 1300), grating-based mode covering the 0.7-5.0 range 	
IFU	-653 ²	IFU spectroscopy with a 0.1" sampling. (IFU made of 30 slices for a total of 900"spaxels")	 - 3"x3" field of view - Low spectral resolution (30 to 300), prism-based mode covering the 0.6-5.0 micron range in one exposure. - Medium (500 to 1300) and high (1400-3600) spectral resolution modes, covering the 0.7-5.0 range in 4 exposures. - IFU and MOS cannot be used at the same time. 		Fixed s and IF apertu
SLIT	1 I.	High-contrast slit spectroscopy. (including with a 1.6"x1.6" square aperture for extra-solar planet transit observation)		- 5 slits available All spectral resolution modes available. - SLIT can be used simultaneously to IFU or MOS.	
	SLIT IFU MOS	LI IE	SQ Image: Solution of the system of the	SQ Image: Solution of the system of the	Solution Multi-object spectroscopy with 0.2"-wide mini-slits. -9 square arcmin. field of view Build of the second of

Spectrograph modes of NIRSpec

Most novel and complex subsystem of NIRSpec

Optical layout

Pick-off mirrors

Magnet move to release/address shutters

1,171

365,171

1,171

365,171

2022/3/18

Summary

- IR detection has a long history and those detectors using PE effect give us more chance in IR astronomy.
- The IR band will let JWST to see more.
- NIRCam provides a variety of filters for different purposes.
- MOS mode of NIRSpec give us the ability to see hundreds of faint objects in a single exposure.

