

The origin of 511 keV emission in the Galaxy

Present by: Shuo Xu, Hongjing Yang, Xiaoya Zhang, Jiahuan Zhu Advisor: Hua Feng

- Background
- Observations
- Explanations
- Conclusions

The origin of 511 keV emission in the Galaxy

BACKGROUND

- Annihilation of positronium (Ps, bound system of an e⁺and a e⁻): composite spectrum with a low energy continuum and a 511 keV line
 - Para-Positronium (spin=0, 511 keV photons)
 - Ortho-Positronium (spin=1, continuum up to 511 keV)
- Direct annihilation of e^--e^+ : 511 keV γ ray

FIG. 1. Spectrum of ortho-positronium annihilation with the three-photon continuum. From Ore and Powell, 1949.

- In-flight phase (~MeV to ~100 eV)
 - Coulomb energy losses (with free electrons)
 - Excitation and ionization of atoms (H, H₂, He)
 - Annihilation
 - Direct annihilation
 - Ps formation via charge exchange with H, H2 and He (<100 eV)

Annihilation of Positrons

- Thermal phase
 - Charge exchange with H, H₂, He
 - Direct annihilation with free and bound electrons
 - Radiative combination (with free electrons)
 - Capture on grains
 - Positronium quenching

f1: fraction of positrons forming positronium in flight by charge exchange with atomic hydrogen

Early Histories: Detection of Positrons on the Earth

- Terrestrial Origin:
 - Cosmic ray interaction
 - β^+ radioactivity of unstable nuclei (artificially created)
- Extraterrestrial Origin:
 - Positrons within cosmic rays

- β^+ decay of radioactive nuclei
 - nucleosynthesis in novae, supernovae, Wolf-Rayet and Asymptotic Giant Branch stars
- $\bullet \quad \pi^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \to {\rm e}^{\scriptscriptstyle +}$
 - collisions of highly energetic (more than ≈200 MeV) cosmic rays with interstellar material (mostly protons)
- Pair production: $\gamma + \gamma \rightarrow e^- + e^+$
 - luminous compact objects: XRBs, micro-quasars, AGNs, etc.
- Pair production: $\gamma + B \rightarrow e^- + e^+$
 - pulsars, neutron stars ($B \gtrsim 10^{12}$ G)

Guessoum et al. 2005, A&A 436, 171

Galactic 511 keV: Candidate sources of positrons

- Astrophysical Origin:
 - Type Ia SNe; Type Ic associated with GRBs; LMXBs and micro-quasars; SMBHs; NS mergers
- Other Theories:
 - Annihilation or decay of MeV dark matter particles
 - De-excitation of GeV-TeV dark matter particles
 - Hawking radiation from primordial BHs
 - DM particles around primordial BHs

- Early Balloon & Satellite Observations (highlights)
 - Johnson et al. (1972): Nal-Detector
 - First detection of γ -ray line from outside the solar system
 - Leventhal et al. (1978): Ge-Detector
 - Separation of the narrow line (511 keV) and continuum component.

Galactic 511 keV: Before INTEGRAL / SPI

- Early Spatial Mapping CGRO/OSSE
 - Excluded a single point source
 - Symmetrical bulge + Galactic plane emission
 - Galactic Bulge: β^+ decay of Co⁵⁶ by SNIa dominant
 - Galactic Disk: β^+ decay of Al²⁶, Co⁵⁶, and Ti⁴⁴ from a variety of stellar sources

The origin of 511 keV emission in the Galaxy

OBSERVATIONS

INTEGRAL

(INTErnational Gamma-Ray Astrophysics Laboratory)

Launched in 2002

• SPI

(SPectrometer on INTEGRAL) Energy range: 18 keV - 8 MeV Energy resolution: 2.2 keV (@1.3 MeV) FOV: 16°, angular resolution: 2.5°

• IBIS

(Imager on Board the INTEGRAL Satellite) Energy range: 15 keV - 10 MeV Energy resolution: ~10% FOV: 8°, angular resolution: 12'

- JEM-X (Joint European X-Ray Monitor)
- **OMC** (Optical Monitoring Camera)

Optical (IR, NUV) band

Soft X-ray

 γ -ray can not be focused by a lens system

Pinhole: works for γ -ray, but not efficient

Imaging γ -ray

A lot of pinholes "=" coded mask

INTEGRAL/SPI

Coded Mask

- Pixel-like "pinholes"
- Sources from different position create different patterns
- Reconstruct the image

Detector

- High purity Germanium (锗)
- Energy resolution ~ keV

Facts of 511 keV line

• FACT 1 Total positron annihilation rate: $L_{e^+} \sim 2 \times 10^{43} \text{ s}^{-1}$

Facts of 511 keV line

• FACT 2 Bulge-Disk ratio of annihilation rate: $B/D \sim 0.6$

dense core + diffuse disk

• FACT 3 Positronium fraction: $97\% \pm 2\%$

$$f_{\rm Ps} = \frac{8I_{3\gamma}/I_{2\gamma}}{9 + 6I_{3\gamma}/I_{2\gamma}},$$

 2γ : 511 keV photons direct e^--e^+ annihilation p-Ps (measured by 511 keV line)

3γ : three photons with total energy 1022 keV o-Ps (measured by continuum)

• **FACT 3** Positronium fraction: $97\% \pm 2\%$

• **FACT 4** Kinetic energy of Positron: < 3 - 7 MeV

FACT 1 Total positron annihilation rate: $L_{e^+} = 2 \times 10^{43} \text{ s}^{-1}$ **FACT 2** Bulge-Disk ratio of annihilation rate: $B/D \sim 0.6$ (?) **FACT 3** Positronium fraction: $97\% \pm 2\%$ **FACT 4** Kinetic energy of Positron: < 3 - 7 MeV

观测过程:
$$d = Cs + b$$

反解过程:
$$s' = Md = MCs + Mb$$

Prof. Feng @ High Energy Astrophysics

观测过程:
$$d = Cs + b$$

d-观测图像 *C*-码板 *s*-源空间分布 *b*-背景

反解过程:
$$s' = Md = MCs + Mb$$

Prof. Feng @ High Energy Astrophysics

Challenges of the Coded Mask

(Use different reconstruction algorithms)

Asymmetric disk component

(Weidenspointner et al. 2008)

No evidence for a disk asymmetry (Bouchet et al. 2008, 2010)

Reconstructing extended sources is a challenge for coded mask instruments

Future Observation

100

- **FACT 1** Total positron annihilation rate: $L_{e^+} \sim 2 \times 10^{43} \text{ s}^{-1}$
- **FACT 2** Bulge-Disk ratio of annihilation rate: $B/D \sim 0.6$ (?)
- **FACT 3** Positronium fraction: $97\% \pm 2\%$
- **FACT 4** Kinetic energy of Positron: < 3 7 MeV

Theoretical interpretations should explain all the observational facts

The origin of 511 keV emission in the Galaxy

EXPLANATIONS: ASTROPHYSICS

Astrophysics—²⁶Al

Decay chain	Half life	γ -ray [keV]	Production site
		(BR)	
$^{26}_{13}\text{Al} \rightarrow ^{26}_{12}\text{Mg}$	7.4×10 ⁵ yr	1809(1)	WR stars, CCSN
${}^{44}_{22}\text{Ti} \rightarrow {}^{44}_{21}\text{Sc} \rightarrow {}^{44}_{20}\text{Ca}$	59 yr	68(0.94),	CCSN
		78(0.96),	
		1157(1)	
$^{22}_{11}$ Na $\rightarrow ^{22}_{10}$ Ne	2.6 yr	1275(1)	Novae
${}^{56}_{28}\mathrm{Ni} \rightarrow {}^{56}_{27}\mathrm{Co} \rightarrow {}^{56}_{26}\mathrm{Fe}$	77.2 d	847(1),	SNIa
		1238(0.68),	
		1771(0.15),	
		2598(0.17)	

82%: *β*+; 18%: EC

COMPTEL ²⁶Al all sky map

Massive stars are the dominant source (Diehl et al. 1995) Wolf-Rayet stellar winds or supernova explosion (dominant) (Limongi and Chieffi 2006)

Doppler shift of ²⁶AI (INTEGRAL)

About one-half of the disk emission(~10⁴³) can be explained by radioactivity of ²⁶AI; The other half may be explained with ⁴⁴Ti 32

Supernova: ${}^{56}Ni \rightarrow {}^{56}Co \xrightarrow{\beta^+ decay} {}^{56}Fe$

- Type Ia SNe
 - the escape of positrons produced in ⁵⁶Co decays.

SPI significance image in the 508.5–513.5 keV band (Kalemci et al. 2006)

- Type Ic associated with GRBs
 - a large amount of ⁵⁶Ni and ejects
 - e.g. SN 2003dh, that is associated with a gamma-ray burst (GRB).

LMXBs and microquasars

- In the case of LMXBs, positrons should be produced as e⁺ e⁻ pairs in the hot inner regions of their accretion discs.
- a non-negligible fraction of positrons would be channeled out by jets

511 keV morphology

Supermassive BHs

- a significant amount of positrons should have been created during the higher activity phase
 - 1) Tidal disruption of nearby stars and subsequent accretion
 - 2) accretion flow is interrupted by the passage of the shock front of a nearby SN explosion

NS merger

- heated by nuclear processes to temperatures of a few hundred keV, resulting in a population of electronpositron pairs.
- positrons escape from the outer layers of the ejecta.

electron fraction profiles of the ejected material at 10 ms after merger. (Fuller et al. 2019)

- 1. Astrophysical sources (massive stars, SNe Ia, LMXB...) can explain the total flux on the disk
- 2. Other explanation (supermassive black hole, NS merger...) may help explain the bulge flux but require observational evidence

The origin of 511 keV emission in the Galaxy

EXPLANATIONS: PBH & DM PARTICLES

Form in early universe due to inhomogeneity

Mass:

$$M_H(t)\approx \frac{c^3t}{G}\approx 10^{15}\left(\frac{t}{10^{-23}\,s}\right)g$$

Dark Matter Candidate

$$f_{\rm PBH}(M) = \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm CDM}}$$

Primordial Black Holes

Arxiv: 2002.12778

Hawking radiation:

$$T_{H} = \frac{M_{P}^{2}}{8\pi M} \sim 4 \times 10^{-10} \left(\frac{M_{P}}{M}\right) \text{kg} \sim 10^{31} \text{K} \left(\frac{M_{P}}{M}\right)$$
$$\tau(M) \sim \frac{G^{2} M^{3}}{\hbar c^{4}} \sim 100 \tau_{P} \left(\frac{M}{M_{P}}\right)^{3}$$

Evaporation: $\frac{dl}{d}$

$$\frac{M}{2t} \propto -M^{-2}$$

$$M_{max} \sim 10^{36}$$
kg, $M_{rad} \sim 10^{24}$ kg, $M_{min} \sim 10^{12}$ kg

A simple estimation:

DM in the Galactic Center $\sim 10^{34}$ kg $f_{PBH} = 1$ (at center) Estimate positron produce rate $\sim 10^{43}/s$ for all PBH at M_{min}

Mod. Phys. Lett. A 2005.20:1573-1576

	Light DM (MeV)	Heavy DM (GeV-TeV)	
Decay	Decay $\chi \rightarrow e^- + e^+ + \cdots$	Deexciting $\chi^* \rightarrow e^- + e^+ + \chi + \cdots$	
Scattering	Annihilation $\chi + \chi \rightarrow e^- + e^+$	Upscattering/ Downscatteriing	

Decay scenario:

Scattering scenario:

 $\Phi_{511,\gamma} \propto \text{integral of } \rho_{DM}^2 \text{ along LOS}$

Hooper et al. PRD 77,087302 (2008)

DM halo around the PBH:

$$\dot{n}_{e^+} = n_{PBH} \Gamma_{PBH}$$

Consider multiple components: (self-)annihilating DM + PBH + β^+ emission(disk)

A 3-parameter mixed model: C_A, C_D, \dot{n}_{YD}

A mixed model

$$\frac{C_D}{C_A} < 0.37$$
 (Einasto Profile)

2007.11804 Cai et al.

A mixed model

2007.11804 Cai et al.

Comments

x20

50

1. The DM particle and PBH have not been found 2. Large parameter space for many DM models, More observation constraint on DM is needed.

12

Comments

More DM, less astrophysical sources

Take home message

- 511 keV emissions are ~100% from lowenergy Ps annihilation from both Galactic bulge and disk, and the two components are comparable.
- 2. Astrophysics can explain the total flux on the disk but hardly match the bulge flux
- 3. DM and PBH can be the explanation for 511 keV emission GCE but need more constraint by observation

Candidate e⁺ sources

1	1		: ;		
Source	Process	$E(e^+)^{\rm a}$ (MeV)	$e^+ \text{ rate}^{b}$ $\dot{N}_{e^+}(10^{43} \text{ s}^{-1})$	Bulge/disk ^c B/D	Comments
Massive stars: ²⁶ Al	β^+ decay	~1	0.4	< 0.2	\dot{N} , B/D : Observationally inferred
Supernovae: ²⁴ Ti	β^+ decay	~ 1	0.3	< 0.2	N: Robust estimate
SNIa: ⁵⁶ Ni	β^+ decay	~ 1	2	< 0.5	Assuming $f_{e^+,\text{esc}} = 0.04$
Novae	β^+ decay	~ 1	0.02	< 0.5	Insufficient e^+ production
Hypernovae/GRB: ⁵⁶ Ni	β^+ decay	~ 1	?	< 0.2	Improbable in inner MW
Cosmic rays	<i>p</i> - <i>p</i>	~30	0.1	< 0.2	Too high e^+ energy
LMXRBs	$\gamma - \gamma$	~1	2	< 0.5	Assuming $L_{e^+} \sim 0.01 L_{\text{obs},X}$
Microquasars (μ Qs)	$\gamma - \gamma$	~1	1	< 0.5	e^+ load of jets uncertain
Pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.5	< 0.2	Too high e^+ energy
ms pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.15	< 0.5	Too high e^+ energy
Magnetars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.16	< 0.2	Too high e^+ energy
Central black hole	<u>p-p</u>	High	?		Too high e^+ energy, unless $B > 0.4 \text{ mG}$
	γ - γ	1	?		Requires e^+ diffusion to $\sim 1 \text{ kpc}$
Dark matter	Annihilation	1 (?)	?		Requires light scalar particle, cuspy DM profile
	Deexcitation	1	?		Only cuspy DM profiles allowed
	Decay	1	?		Ruled out for all DM profiles
Observational constraints		<7	2	>1.4	

TABLE IX. Properties of candidate positron sources in the Milky Way.

^aTypical values are given. ^b e^+ rates: in roman: observationally deduced or reasonable estimates; in italic: speculative (and rather close to upper limits).

^cSources are simply classified as belonging to either young (B/D < 0.2) or old (< 0.5) stellar populations.

(Prantzos et al. 2011)