nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

<u>nature</u> > <u>matters arising</u> > article

Matters Arising Published: 29 April 2020

On the signature of a 70-solar-mass black hole in LB-1

1

The Nature of LB 1-like Systems

Yuanyi Wu, Xinyan Hua, Xiaosheng Zhao

Apr 15, 2022

Clue: The motion of the B star (radial velocity) + an accompanying Hα emission line

Conclusion: 68 solar mass BH and a companion B-type star

Jifeng Liu et al. 2019

Yu Jingchuan

LAMOST

Chandra X-ray Observatory

Spectroscopy

GTC/OSIRIS

Keck/HIRES

Non-detection of X-ray

Properties of LB-1 BH

- High mass
- Non-interacting

Upper mass gap (UMG)

UMG: 50-150 (52-133) solar mass

Upper mass gap (UMG)

Pair-instability supernova

- Collision between atomic nuclei and energetic gamma rays
- Production of free electrons and positrons (consume energy)
- Reduces the internal radiation pressure
- Partially collapse under its own huge gravity
- Runaway thermonuclear explosion

130 to 250 solar masses low to moderate metallicity (**Population III stars**)

Lower limit: 45 (pair-instability pulsational mass loss) - 60 (nonrotating stars) M_{\odot}

Lower mass gap (LMG)

LMG: 2-5 solar mass

Tolman–Oppenheimer–Volkoff limit of neutron star: around 2 solar masses

Lower mass gap (LMG)

Black hole mass distribution in low-mass X-ray binaries

Discovery (Bailyn et al, 1998)

- The supernova explosion itself.
- The binary nature of the observed systems.

Simulation (Fryer 1999; Fryer & Kalogera 2001)

- A step-like dependence of supernova energy on progenitor mass
- Selection biases.

More explanation (Postnov & Cherepashchuk 2003)

• Black hole evaporation in braneworld gravity models?

LMG?

Third Observing Run (between 1 April 2019 15:00 UTC and 27 March 2020)

Undetectable via the usual x-ray signature?

Properties of LB-1 BH

- High mass
- Non-interacting

Non-interacting BH systems

Interacting BH systems

X-ray binaries

- The companion must either fill its Roche lobe
- or have a modest separation and a strong wind.

Gravitational wave observations

- Very small fraction of surviving binaries
- On very short orbits leading to a merger

Non-interacting BH binaries

- Hard to find
- Important & Far larger population

Non-interacting BH systems

Before

Numerous spectroscopic and photometric surveys (since more than 50y ago)

Recently

- Rapidly increasing wide-field surveys
- and growing interest in the **progenitors** of **gravitational wave sources**.

Giraffes in the binary zoo

Light curves

TESS

ATLAS

RV signal

ZTF

LBT

BH or not?

Two typical systems: mass-gap, non-interacting

- LB-1 system (UMG)
- Giraffes (LMG)

Yes!

Debate on

- Model fitting
- Hα emission line
- •••

No

LB-1 Liu et al. 2019 (Nature, 575, 618)

14

Radial velocity of a binary system

Radial Velocity Measurements using Doppler Spectroscopy

$$K = V \times sin(i)$$

$$M_{comp} = \frac{M_{star} \times K_{star}}{K_{comp}}$$

$$\frac{PK^{3}(1-e^{2})^{1.5}}{2\pi G} = \frac{M_{unseen}^{3}sin^{3}i}{(M_{unseen}+M_{seen})^{2}}$$

$$a^3 = \frac{G(M_{unseen} + M_{seen})P^2}{4\pi^2}$$

Stellar fitting of spectra, isochrone

The flux distribution to the various atmospheric parameters for an A-type star

solar metallicity grid of stellar evolutionary tracks

Jieun Choi et al. 2016

Spectrum fitting + Distance + isochrone fitting \rightarrow constrain the properties of stars

16

- One of the LAMOST target, shows periodic radial-velocity variation + strong H_{α} emission line Spectra from LAMOST+ higher resolution spectra from Keck & GTC
- Wide band spectral energy distribution (SED) from the UCAC4 catalogue, 2MASS and the AllWISE data release
- Chandra: Non-detection in X-ray

RV + spectra fittin

B star + dark co Non-interact

LB-1

$$\mathbf{ng} \longrightarrow M_{comp} = \frac{M_{star} \times K_{star}}{K_{comp}}$$

$$\frac{1}{100} \text{ mpanion } \sim 68 M_{\odot}$$

17

Spectra of LB-1 contain 3 components

Constrain properties of the visible star

From spectrum fitting, get T_{eff} and log g, likely to be a <u>B-type star</u> or a <u>subdwarf</u>

From spectrum fitting, the Balmer lines is too narrow for a subwarf.

With T_{eff} and log g, generate theoretical SED models. Compare theoretical models with real SED: Distance (D)=4.23± 0.24kpc, E(B-V)=0.55±0.03mag

—> too far for a subdwarf!

A sub-giant B star, $M_B = 8.2^{+0.9}_{-1.2} M_{\odot}$, $R_B = 9 \pm 2R_{\odot}$, age $= 35^{+13}_{-7}$ Myr, metallicity $(1.2\pm0.2)Z_{\odot}$

P + M_B —> M_{comp} ~(6-250) M_{\odot} , degenerate with inclination

Too faint to be a main sequence star,

a black hole!

M_{comp}

Fit RV, constrain the mass of black hole

Fit RV, find $K_{H_{\alpha}} = 6.4 \pm 0.8$ km/s.

$$M_{comp} = \frac{M_B \times K_B}{K_{comp}} = \frac{M_B \times K_B}{K_{H_{\alpha}}} = 68^{+11}_{-13} M_{\odot}, \text{ inclination angle i} \sim 15^{\circ}$$

How to form this kind of black hole?

 $M_{comp} = 68^{+11}_{-13} M_{\odot}$, reach the upper mass gap of black hole.

Also, the metallicity of B star is about $1.2Z_{\odot}$, much higher to form massive black hole (need < $0.2Z_{\odot}$)

Even with low metallicity, this system still challenge the current stellar formation theories

Two possible models: (1) actually, two black holes

(2) Initially, it is a triple system. Later on, the inner two form a massive black hole, the outer one evolve to a B star.

Summary of LB-1

From spectrum fitting, they constrain the properties of LB-1 system:

In their analysis, the assumption of H_{α} emission is important for determining the BH mass.

B star + dark companion ~ $68M_{\odot}$ Non-interacting black hole that reaches upper mass gap

The LB-1 system

(Liu et al., 2019)

The RV-variable absorption line will shift the Hα emission line and result in an apparent velocity offset.

 Simulation: a static Hα emission + a Doppler-shifting stellar absorption

Same results as in Liu et al.

⁽Abdul-Masih et al. 2020)

\Rightarrow Source of the H α emission?

➤ The centre peak of the Hα line profile seems to track the velocity of the B star.➤ Accretion of the stellar wind?

Two stellar components with comparable brightness in optical flux

 \succ Primary: a stripped star, B type, 1.5 M_{\odot}

➤ The unseen secondary: a Be star (rapidly rotating B3 V star with a decretion disk),
7 M_☉

(T. Shenar et al., 2020)

- RVs from HERMES and FEROS
 - Period: 78.7999 ± 0.0097 days
 - K_1 : 52.94 ± 0.13 km/s
 - Mass: 1.5 *M*_☉

- Hα line moves the same as He I 6678, which has been used to extract RV.
- \succ The primary star has H α emission

31

(T. Shenar et al., 2020)

32

(T. Shenar et al., 2020)

The possible scenarios of LB-1

- > From $K_2 < 1.3$ km/s $\rightarrow M_2 > 330 M_{\odot}$ (El-Badry & Quataert, 2020)
- > A stellar remnant (mentioned in El-Badry & Quataert, 2020)
- > A stellar-mass BH (mentioned in El-Badry & Quataert, 2020)
- A solar mass pre-subdwarf + a less massive companion (e.g. NS) (Eldridge et al., 2019 and Irrgang et al., 2019)
- A B star + a Be star (T. Shenar, et al., 2020)

2M0412 or the "Giraffe" Jayasinghe et al. 2022

Why Giraffe? Differences with LB-1

Why people study Giraffe & the data

- ATLAS, ASAS, ZTF and TESS.
- Spectra from APOGEE, HIRES on Keck and PEPSI.
- Distance and extinction from Gaia. D~3.7-4.3kpc due to the different zero-point correction.
- UV from Swift UVOT & X-ray from Swift X-Ray Telescope

Compare with LB-1

- companion.
- Support red giant black hole model, with BH mass $\sim 2-3M_{\odot} \rightarrow 10$ lower mass gap!

First classified as a variable star (P~80.36d) in the Asteroid Terrestrial-impact Last Alert System (ATLAS) catalog. Then classified as a semi-regular variable (P~41d) by the All-Sky Automated Survey for SuperNovae (ASAS-SN), and the Zwicky Transient Facility (ZTF). Light curves from

Light curve (LC), which means the tidal deformation happens. Direct constrain from LC.

In spectra, Giraffe has a larger contribution (both absorption lines and H_{α} emission) from the

Constrain properties of visible star from SED and spectra

P = 80.2 d

Spectra indicate the visible star is a rotating red giant, with v_{rot} sini~13km/s. Assume tidal lock, $P_{rot} = P_{orb}$,

$$r_{rot} = \frac{2\pi R_{giant}}{P_{rot}} = 18.7 \pm 0.4 \text{ km/s}(\frac{R_{giant}}{30_{R_{\odot}}}) \longrightarrow i \sim 42^{\circ}.$$

Joint fitting of SED, spectra and D from Gaia, under the assumption of single star tract without mass stripping —> $M_{giant} = 1.1_{0.22}^{+0.24} M_{\odot}, R_{giant} = 29.9_{-2.0}^{+2.2} R_{\odot},$

$$G_{eff} = 4306 \pm 39K, d_{giant} = 4301^{+318}_{-289} kpc$$

Upper mass of companion: if main sequence star, $<1.4M_{\odot}$; if sub giant, $< 1.7 M_{\odot}$

Combine light curve and RV

LC (fitting by *PHOEBE*)+RV:

• **Keplerian orbit models** (using RV): for $M_{giant} = 1M_{\odot}, i = 42^{\circ} - M_{comp} = 3.3M_{\odot}, a_{orb} = 128R_{\odot}$ and the size of Roche lobe $R_{L.giant} = 36 M_{\odot}$.

(1) the giant fills Roche lobe, has mass transfer: too luminous for current distance (at least need D=4.7kpc)

(2)the giant does not fill Roche lobe: $i \sim 39.5 - 47.8^\circ$, $M_{giant} = 0.35 - 0.81 M_{\odot}, R_{giant} = 23 - 33 R_{\odot}$ and $M_{comp} = 2.1 - 3.6 M_{\odot}$

• Mass of giant star is much lower than single star tract

 \rightarrow a red giant that has been heavily stripped by binary interactions.

• Mass of companion is much larger than the constrain of SED

—> non stellar component

From the residuals of RV & spectra to further constrain properties of the companion

The RV has 2 components \longrightarrow detect the RV of companion by cross-correlate the spectra with a synthetic spectrum that mimic the spectrum of the companion.

Mass ratio q~0.2

From the residuals of RV & spectra to further constrain properties of the companion

Subtract the spectrum of the red giant, then the residual is the companion. Fit the **residual** spectrum (with model of star) $-> T_{eff} = 6350K$, log g = 3.1

A black hole/neutron star with an accretion disk

A main sequence star with 6400K $\sim M = 1.3 M_{\odot}$ $q=0.2, M_{comp} > 1.6 M_{\odot}$

The companion also can not be a binary system —> velocity dispersion is not large enough

(1) in phase with companion

(2)If it is related to giant, the structure should be even broader

Emission from accretion disk

41

Summary of Giraffe

	Possibility	Dark Companion
Hot, main sequence companions ruled out by SED limit (?	Single Star
WD will exceed Chandrasekhar limit (M	×	Single WD
NS will exceed maximum mass (M	×	Single NS
Simpl	\checkmark	Single BH
Ruled out by SED limit (M_{bin}	×	[†] Star + Star
For $M_* \leq 1.4 M_{\odot}$, the WD mass exceeds Chan	×	[†] Star + WD
For $M_* < 1.4 M_{\odot}$, the NS mass α	×	[†] Star + NS
For $M_* < 1.4 M_{\odot}$, the BH mass should be M_*	×	[†] Star + BH
Both WD components exceed Chan	×	[†] WD + WD
NS mass is in the observed range if A	×	$^{\dagger}NS + WD$
BH mass is even lower the	×	$^{\dagger}BH + WD$
The BH must have	×	$^{\dagger}NS + BH$
Both NS components should have $M_{\rm NS} \gtrsim 1.2 \ M_{\odot}$, s	×	$^{\dagger}NS + NS$
The BHs h	×	$^{\dagger}BH + BH$

Disfavored because the orbital motion of an inner binary will dominate over the reflex motion of the giant's orbit observed in our spectra.

Comment

- $(M_* \leq 1.4 M_\odot).$ $M_{\rm WD} > 1.4 \ M_{\odot}$). $M_{\rm NS} > 2.3 \ M_{\odot}$). lest explanation.
- $i_{\text{nary}} \lesssim 2.6 \ M_{\odot}$). drasekhar limit. exceeds $2.2M_{\odot}$. $M_{\rm BH} > 2.8 \ M_{\odot}.$
- drasekhar limit.
- $M_{\rm WD} > 0.8 \ M_{\odot}$
- nan with no WD.
- a NS-like mass.
- so $q_{\text{inner}} \gtrsim 0.67$.
- nave NS masses.

Through fitting the **residual spectra** to constrain properties of the companion, they think the companion is a black hole/ neutron star with an accretion disk.

 $M_{comp} \ 2 - 3M_{\odot}$, in the lower mass gap of black hole.

The "Giraffe" system

> A single star model + residuals

Model fittings

 \blacktriangleright A giant with $T_{eff} \sim 4050$ K a sub-giant with T_{eff} ~ 5200 K \succ H-band contribution: 80% and 20% $> M_1/M_2 \sim 0.2$ vsini 12 and 16 km/s d about 3.7 kpc \succ SED: $R_1 \sim 25 R_{\odot}$, $R_2 \sim 9 R_{\odot}$ $> M_1 = 0.35 M_{\odot}$ \succ Inclination of 50 degrees $> M_2 = 1.83 M_{\odot}$

(El-Badry et al., 2022)

The "Giraffe" system

> Comparison with the Kurucz model

Why not a BH and Why a subgiant?

More absorption but less emission vsini < 20 km/s + a 3 solar-mass BH</p> \rightarrow materials on AU scales, which is larger than the binary sepration \rightarrow can not trace the secondary's centre of mass? \succ X-ray upper limits imply $L_{\chi} \lesssim 10^{-5} L_{out}$

➢ Selection effect:
A non-subgiant → blue/UV →
detectable → BH candidate (X)
➢ Evolution scenarios?
(El-Badry et al., 2022)

Current status of non-interacting BH systems

BH type	Name	Mass (M_{\odot})	Time	Status
Globular-cluster	NGC 3201 BH1	4.36 ± 0.41	2018	Yes
	NGC 3201 BHC1	$M_{BH}\sin(i) = 7.68 \pm 0.50$	2019	Yes
	NGC 3201 BHC2	$M_{BH}\sin(i) = 4.4 \pm 2.8$	2019	Yes
	NGC 1850 BH1	$11.1^{+2.1}_{-2.4}$	2021	No
	NGC 2004 #115	~25	2021	No
Field BH	LB-1	$\sim 68^{+11}_{-3}$	2019	No
binaries	Giraffes	2.97 ± 0.02	2021	No
	Unicorn	3.04 ± 0.06	2021	No
	HR 6819	6.3 ± 0.07	2020	No
	J05215658	$\sim 3.3^{+2.8}_{-0.7}$	2019	Yes?

LMG & non-interacting

Current status of non-interacting BH systems

		6	x)
BH type	Name	Ma	MAST
Globular-cluster	NGC 3201 BH1		
	NGC 3201 BHC1	M _B	WANTED
	NGC 3201 BHC2	M	BLACK HOLES A noninteracting low-mass black hole-giant star
	NGC 1850 BH1		binary system Todd A. Thompson ^{1,2,3} *, Christopher S. Kochanek ^{1,2} , Krzysztof Z. Stanek ^{1,2} , Carles Badener ^{4,5}
	NGC 2004 #115		Perry Berlind ⁷ , Michael L. Calkins ⁷ , Jamie Tayar ^{1,8} , Lennart Lindegren ⁹ , Jennifer A. Johnson ^{1,2} , Thomas WS. Holoien ¹⁰ , Katie Auchettl ^{2,11,12} , Kevin Covey ¹³ Black hole binary systems with companion stars and in the stars and in
Field BH binaries	LB-1		interaction and accretion. Noninteracting binaries are typically found via their x-ray emission, gener observed using other methods. We combine radial velocity and photometric variability data to show the bright, rapidly rotating giant star 2MASS J05215658+4359220 is in a binary system with a massive u companion. The system has an orbital period of -83 days and new room are reased.
	Giraffes	s	variability period of the giant is consistent with the orbital period, indicating star spots and tidal synchronization. Constraints on the giant's mass and radius imply that the unseen companion is 3.3^{+2}_{-0} masses, indicating that it is a noninteracting low-mass black hole or an unexpectedly massive neutron
	Unicorn	5	Science/Nature
	HR 6819		
	J05215658	C	REWARD

LMG & non-interacting

Prospect of Galactic BH

Binary population synthesis models:

• 30-300 non-interacting BHs detectable in binaries with **astrometry from Gaia**

LAMOST

2014-2024 (Gaia DR5) DR3 (2020) for now.

- 10^3 detached non-interacting BHs in the MW,
- 10^2 having luminous companions brighter than $G \sim 20$ mag

In addition…

• Targeted searches combining high-cadence **photometry** and sparsely sampled **radial velocities** from wide-field time-domain surveys

All-Sky Automated Survey for Supernovae (ASAS-SN)

