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Why computational MHD? 

n  Astrophysical plasma phenomena are typically highly-nonlinear, 
and in multi-D: need reliable numerical algorithms to solve MHD 
equations. 

n  MHD provides accurate description of collisional plasmas. 

n  MHD is often reasonably OK to describe the large-scale 
phenomenon (even) for collisionless plasmas. 

n  Computational MHD has been playing a major role in nearly all 
subfields of astrophysics from star/planet formation to cosmology. 
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Computational science has constantly been growing with progress in 
computer hardware, numerical analysis, software engineering. 

High-performance computing has become standard practice in science. 



Codes, and Jargons 
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Godunov Code 
Finite volume/difference 
Riemann solvers 
PPM reconstruction 
CT algorithm 
…  



Outline 

n  Hyperbolic PDEs and conservation laws 

n  Solving the linear advection equation 

n  Finite volume (Godunov) methods 

n  Preserving divergence-free B field 

n  Code tests 

n  Adding source terms 

n  Other methods for solving MHD equations 
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Useful reference: Finite Volume Methods for Hyperbolic Problems, LeVeque, 
2002, Cambridge University Press. 



Types of PDEs 
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There are in general 3 types of PDEs. For a 2nd order PDE of the form  

it can be categorized based on the discriminant:  

Hydro and MHD equations are a system of partial differential 
equations (PDEs). 

Hydro/ideal MHD equations are hyperbolic PDEs, but source terms 
(resistivity/viscosity/self-gravity) can be of other types. 



Types of PDEs 
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Prototype of elliptic PDE: 

r2u = fPoisson equation: (self-gravity) 

Prototype of parabolic PDE: 

@
t

u = D@2
xx

uDiffusion equation: 
(viscosity, resistivity, 
heat conduction) 

Prototype of hyperbolic PDE: 

Wave equation: @2
tt

u� c2@2
xx

u = 0

Linear advection equation: @
t

u+A@
x

u = 0



The linear advection equation 
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@
t

u+A@
x

u = 0Consider linear advection eqs with constant A: 

Solution: 
u(x, t) = u0(x�At)

The solution is constant along the 
ray (called the characteristic curve): 

X(t) = X0 +At
x X0 

X(t)=X0+At 

Proof: 

d

dt
u(X(t), t) = @

t

u(X(t), t) +X 0(t)@
x

u(X(t), t)

= @
t

u(X, t) +A@
x

u(X, t) = 0



The Riemann problem (for linear advection eq) 
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@
t

u+A@
x

u = 0

uL uR 

x=At 

x=0 

t 

Initial condition: 
u=uL, (x<0) 
u=uR, (x≥0) 

Result: discontinuity propagates along the characteristic curve. 



Hyperbolicity of linear systems 

A linear system of the form 

 

is hyperbolic if matrix A is diagonalizable with real eigenvalues. 
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Let us denote the eigenvalues by �1  �2  ...  �m

The matrix is diagonalizable if there is a complete set of eigenvectors such that 

Arp = �prp

The right-eigenvectors jointly form a matrix R, so that 

R�1AR = ⇤ = diag(�1,�2, ...,�m)

We can then define characteristic variable                           , and the equation 
becomes  

w = R�1u

@
t

wp + �p@
x

wp = 0

=> a set of decoupled linear advection equations, with λp being wave speeds. 

@
t

u+A · @
x

u = 0



The Riemann problem (for a linear system) 

10 

@
t

u+A · @
x

u = 0

Initial condition: 
u=uL, (x<0) 

u=uR, (x≥0) 

Solution: 
uL uR 

λ1 

x=0 

λm λ2 

u1 

u2 um-1 

1). Decompose uL, uR into characteristic variables. 

uL,R =
X

p

wp
L,Rr

p

2). Each characteristic variable evolves according to its own characteristics. 

w

p(x, t) = w

p
L x� �

p
t < 0if  , otherwise,   wp(x, t) = w

p
R

3). Convert back to original variables. 

u(x, t) =
X

p:�p
<x/t

w

p

R

rp +
X

p:�p
>x/t

w

p

L

rp



Hyperbolic PDEs and conservation laws 

n  An important class of hyperbolic PDEs is conservation laws: 
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where F(u) is the flux function. It can be rewritten in quasi-linear form 

n  Ideal MHD equations are (non-linear, multi-D) conservation laws: 

It is hyperbolic if F’(u) is diagonalizable with real eigenvalues for all u. 

Ideal MHD equations are 
hyperbolic because all 
wave speeds are real. 

@
t

u+ @
x

F (u) = 0

@
t

u+ F 0(u) · @
x

u = 0



Non-linear equations 

n  Hydro/MHD equations are non-linear => further complications 
n  Simplest example: Burger’s Equation 
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@
t

u+ u@
x

u = 0

When converging, characteristic curves cross! 
This should not happen physically: non-linear steepening into shocks. 

Characteristic curves converge when  @
x

u0 > 0
Characteristic curves diverge when  @

x

u0 < 0

Characteristic curve: X(t) = X0 + u0(X0)t



Riemann problem for non-linear equations 
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@
t

u+ u@
x

u = 0

These behaviors can also be obtained by adding an infinitely small diffusion term. 

Initial condition: 
u=uL, (x<0) 
u=uR, (x≥0) 

uL<uR: rarefaction  uL>uR: shock  



Discontinuities 

n  Remarkably, hyperbolic PDEs admit discontinuous solutions. In 
MHD, these are contact discontinuities and shocks! 

n  Mathematically, these are exact non-linear solutions to the PDEs 

n  At discontinuities, the classical form of the PDEs fail. These 
solutions are captured in the integral form (more fundamental): 
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n  MHD algorithms must be able to handle both smooth flows 
and discontinuous. 

for any t1 ,t2, x1, x2. 

Z
x2

x1

[u(x, t2)� u(x, t1)]dx =

Z
t2

t1

F [u(x1, t)]� F [u(x2, t)]dt

Solutions to this are called weak solutions. 



Solve the linear advection equation on a grid 
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@
t

u+A@
x

u = 0

1. Forward-time central-space (FTCS): 

u

n+1
i � u

n
i

�t

= �A

✓
u

n
i+1 � u

n
i�1

2�x

◆

Initial condition: u=1 (x<50), u=0 (x>50), A=1. 

The method is 
unconditionally unstable! 



Solve the linear advection equation on a grid 
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@
t

u+A@
x

u = 0

2. Lax-Friedrichs (LF) method: 

IC: one Gaussian, one square waves, A=1, 
periodic BC. 

u

n+1
i � (un

i�1 + u

n
i+1)/2

�t

= �A

✓
u

n
i+1 � u

n
i�1

2�x

◆

The method is stable, but 
VERY diffusive! 

Effectively, added extra 
numerical diffusion to 
stabilize FTCS.  



Solve the linear advection equation on a grid 
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@
t

u+A@
x

u = 0

3. Upwind method: 

un+1
i � un

i

�t
=

�A(un
i � u

n
i�1)/�x (A � 0)

�A(un
i+1 � u

n
i )/�x (A < 0)

IC: one Gaussian, one square waves, A=1, 
periodic BC. 

The method is stable and 
less diffusive, though still 
only first order accurate. 

Can be improved using 
higher-order spatial 
interpolation schemes. 



Towards higher-order accuracy 
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@
t

u+A@
x

u = 0

4. Lax-Wendroff method: 

IC: one Gaussian, one square waves, A=1, 
periodic BC. 

Method is stable but: 
1). Oscillatory solution 
at discontinuities. 
2). It is dispersive.  

u

n+1
i � u

n
i

�t

= �A

✓
u

n
i+1 � u

n
i�1

2�x

◆
+

A

2�t

2

(un
i1 � 2un

i + u

n
i�1)

�x

2



The Courant-Friedrichs-Lewy (CFL) condition  

n  Numerical timestep Δt must be sufficiently small so that information 
propagates no more than one grid point per timestep. 

n  Fundamental criterion for numerical stability (can be derived rigorously 
via von Neumann analysis). 

19 

For the linear advection problem                                   , @
t

u+A@
x

u = 0

�t ⌘ C

�x

A

,   where the CFL number C≤1. 

For MHD equations, take A to be: 

A = max[abs(v + vf ), abs(v � vf )]

where v is flow speed, vf is the fast magnetosonic speed. 

I took C=0.8 for the previous two examples. In fact, these methods are 
more accurate as C approaches 1. 

Timestep is determined by the minimum Δt across the entire mesh. 



Finite volume method 
n  FVM works with the integral form of the conservation laws. 
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tn 

tn+1 

Un
iUn

i�1 Un
i+1

Fn+1/2
i+1/2Fn+1/2

i�1/2

U

n

i

=
1

�x

Z
xi+1/2

xi�1/2

u(x, t
n

)dxConserved variables are 
volume-averaged: 

F

n+1/2
i�1/2 =

1

�t

Z tn+1

tn

f(u(xi�1/2, t))dt
Interface fluxes are 
time-averaged: 

U

n+1
i = U

n
i +

�t

�x

(Fn+1/2
i+1/2 � F

n+1/2
i�1/2 )Finite volume update: 

Conserved variables are conserved to machine accuracy. 



How to compute the fluxes? 
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tn 

tn+1 

Un
iUn

i�1 Un
i+1

Fn+1/2
i+1/2Fn+1/2

i�1/2

@
t

u+A@
x

u = 0Consider again the linear advection equation: 

Upwind flux: Fi�1/2 =
AUi�1 (A � 0)
AUi (A < 0)

Lax-Friedrichs: Fi�1/2 =
1

2
A(Ui�1 + Ui)�

�x

2�t

(Ui � Ui�1)

We only know the volume-averaged values U, but to get the flux at cell interfaces, 
we need to know the value of u at xi+1/2. This has to be done approximately. 

Lax-Wendroff: 
F

n
i�1/2 =

1

2
A(Un

i�1 + U

n
i )�

�t

2�x

A

2(Un
i � U

n
i�1)Fi�1/2



Godunov method 
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n  1. Given volume averaged values        (defined at each cell), 
reconstruct piecewise polynomial function            (defined at all x). 

n  2. Using             as initial condition, evolve the hyperbolic 
equation exactly (or approximately) for Δt to obtain                . 

n  3. Average                 over each cell to obtain new cell averages: 

Un
i

ũ

n(x)

Simplest scenario (piecewise constant/donor cell): 

ũ

n
(x) = U

n
i for xi�1/2  x < xi1/2

ũ

n(x)
ũ

n+1(x)

ũ

n+1(x)

U

n+1
i

=
1

�x

Z
xi+1/2

xi�1/2

ũ

n+1(x)dx

(Basic idea) (Godunov, 1959) 



Godunov method 
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Reconstruct -> 
Evolve -> 
Average 

For linear advection equations, Godunov method with piecewise 
constant reconstruction = upwind method. 

(Basic idea) 

A finite volume method originally proposed by Godunov (1959) for 
solving (non-linear) equations of gas dynamics. 

Key property: flux is properly upwinded to avoid spurious oscillations. 



Toward higher order accuracy 
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x 

u 

Piecewise linear reconstruction (MUSCL scheme, van Leer, 1979) 

Equivalence of the Lax-Wendroff 
method: overshoots => oscillations 

Can also be done at 
3rd order: Piecewise-
parabolic method 
(Colella & Woodward, 
1984)  

i+1 i+2 i+3 i i-1 i-2 

volume containing 
upwind flux at i-1/2 

volume containing 
upwind flux at i+1/2 

For vx>0: 

UR
i�1/2

UL
i�1/2

Need slope limiting to avoid oscillations near discontinuities. 



Slope limiters 
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A slope limiter needs to be “monotonicity preserving”: not to 
produce any local extrema.  

It can be shown that “total variation diminishing” (TVD) limiters 
are monotonicity preserving, where “total variation” is defined as 

TV(Q) =
1X

i=�1
|Qi �Qi�1|

TVD means TV(Qn+1)≤TV(Qn). 

minmod monotonized central-difference (MC) 

Popular choices of slope limiters include minmod, MC, van Leer, etc. 



Solve the linear advection equation 
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Higher-order Godunov method with piecewise linear reconstruction 

@
t

u+A@
x

u = 0

Initial condition: one Gaussian, one square waves, A=1, periodic BC. 

The method is stable and 
much more accurate: 
 

2nd order accurate for 
smooth flow 
1st order accurate at 
discontinuities. 

+the MC slope limiter. 



Godunov method 
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n  1. Given volume averaged values        (defined at each cell), 
compute the left/right states UL,i-1/2/UR,i-1/2 at cell interfaces based 
on a reconstruction method (+characteristic tracing if needed). 

Un
i

n  2. Solve the Riemann problem 
across cell interfaces to obtain 
intermediate state U*. 

n  3. Define interface flux 

n  4. Apply the flux-differencing formula: 

UL UR 

xi-1/2 

U * 

shock 
rarefaction 

(Generalization to non-linear problems) 

U

n+1
i = U

n
i � �t

�x

(Fi+1/2 � Fi�1/2)

where F(U) is the flux function. 

Fi�1/2 = F (U⇤)



Solving non-linear equations 

n  Simplest example: Burger’s Eqs 
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@
t

u+ u@
x

u = 0

@
t

u+ @
x

✓
u2

2

◆
= 0In conservative form: 

Solved with Godunov method + 2nd order reconstruction 

Initial condition: u=1-sin(2πx)/2  in [0, 1], periodic BC.  



1D MHD Equations 
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1D equations are plane-symmetric:                      => r ·B = 0 B
x

= const

1D adiabatic MHD equations in conservative form: 

7 variables, 7 waves 



The Eigensystem 

30 

An “entropy wave” is a contact discontinuity. 

For isothermal MHD, the number reduces to 6 (no entropy wave). 

2 fast magnetosonic waves: 
 
2 Alfven waves: 
 
2 slow magnetosonic waves: 
 
1 entropy wave: 

�1 = v
x

� c
f

�7 = v
x

+ c
f

�5 = v
x

+ c
s

�3 = v
x

� c
s

�4 = v
x

�2 = v
x

� v
A,x

�6 = v
x

+ v
A,x

vA =
Bp
4⇡⇢

v
A,x

=
B

xp
4⇡⇢

c2
f,s

=
1

2


(a2 + v2

A

)±
q
(a2 + v2

A

)2 � 4a2v2
A,x

�
where 

a2 = �P/⇢

The Jacobian matrix          has 7 real eigenvalues, one for each wave: 
@f

@q
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Due to highly non-linear nature, there is no exact MHD Riemann solver. 
Exact hydro Riemann solver is possible, but numerically very expensive. 
Approximate Riemann solvers are widely used in computational MHD. 

The MHD Riemann problem 

U⇤
1

U⇤
2 U⇤

3 U⇤
4 U⇤

5

U⇤
6

U U



MHD Riemann solvers 
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The HLLD solver: (Miyoshi & Kasano, 2005) 

5-wave Riemann solver with 4 intermediate states: resolves fast, Alfven waves 
and the contact discontinuity. 
Reasonably simple and efficient, guarantees positivity in 1D, better resolution at 
contact discontinuities. 

Keeps the fastest/slowest waves, averages all intermediate states in between. 
Advantage: very simple and efficient; intermediate state is positive definite. 
However, it is very diffusive, especially at contact discontinuities. 

The HLLE solver: (Harten, Lax & van Leer, 1983, Einfeldt et al. 1991) 

Exact Riemann solver derived from linearized (approximate) MHD equations. 
Captures all 7 waves, generally less diffusive and more accurate, but requires 
characteristic decomposition (expensive), and can fail for certain L/R states. 

The Roe solver: (Roe, 1981, Cargo & Gallice, 1997) 

There is also the HLLC solver for hydrodynamics (which includes a contact wave). 



Primitive vs. conserved variables 
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It is necessary to convert conserved 
variables U to primitive variables W 
in various stages of the computation. 

Caveat: Due to the approximate 
nature of the Riemann solver, 
one might get negative density 
after one step of integration. 

E =
P

� � 1
+

1

2
⇢v2 +

B2

8⇡

one might obtain negative pressure 
following conversion from conserved 
to primitive variables. 

Similarly, with 

These issues can be more severe in 
relativistic MHD. 

Solution:  
1). Add density/pressure floors. 
2). Use a more diffusive solver. 



MHD integrator 

n  Godunov’s original method (1st order) 
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Step 1: Donor-cell reconstruction to obtain interface L/R states. 
Step 2: Use an MHD Riemann solver to compute 1st order fluxes. 
Step 3: Update the system for a full time step using 1st order fluxes. 

Robust, but very diffusive. 



MHD integrator 

n  Second-order accuracy can be achieved using predictor-
corrector type method (with a number of varieties). 
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U

n+1/2
i = U

n
i � �t

2�x

(Fn
i+1/2 � F

n
i�1/2)

U

n+1
i = U

n
i � �t

�x

(Fn+1/2
i+1/2 � F

n+1/2
i�1/2 )

Step 1: Donor-cell reconstruction to obtain interface L/R states. 
Step 2: Use a Riemann solver to compute 1st order fluxes Fn. 
Step 3: Advance the system for ½ time step (predict step). 

Step 4: Use the second-order (piecewise-linear) reconstruction to compute 
the L/R states from Un+1/2. 

Step 5: Use a Riemann solver to compute 2nd order fluxes Fn+1/2. 
Step 6: Update the system for a full time step. 

This is one algorithm adopted in Athena, following Falle (1991), modified from the 
MUSCL-Hancock schemes.  



Multi-dimension MHD 

n  MHD equations in conservative form in 3D: 

n  Traditionally, multi-D methods are constructed using 
directional spliting: 

n  Need unsplit methods (which most current MHD codes adopt): 
3 directions updated at the same time. 
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1.Solve Ut=Fx as in 1D MHD. 
2.Solve Ut=Gy, with G constructed from result of the x-update. 
3.Solve Ut=Hz, with H constructed from result of the y-update. 

Pros:  easy to implement. 
Cons: symmetry is not preserved, incompatible with constrained transport, 
extension to AMR (adaptive mesh refinement) is not straightforward. 



Importance to preserve divergence of B 

n  For multi-dimensions numerical schemes, there is no guarantee 
that divergence of B is kept zero, due to truncation error. 
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J ⇥B = �r ·
✓
B2

8⇡
I� BB

4⇡

◆
� (r ·B)B

4⇡

Consequence: 

Divergence error can accumulate, leading to inconsistent results 
over long term. 
In some cases, it can lead to numerical instabilities and make the 
code crash… 

spurious parallel 
acceleration 



Techniques to preserve divergence of B 

n  Divergence cleaning: 

n  Use vector potential (usually used in finite-difference codes, e.g., Pencil) 
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@A

@t
= v ⇥B , B = r⇥A Div(B)=0 by construction, but need 

hyper-resistivity for stabilization. 

Powell’s 8-wave scheme (Powell, 1999):  
Add source terms to momentum/induction equations to advect magnetic 
monopoles away. But: can give the wrong shock jump conditions. 

Projection method (Brackbil & Bams, 1980): 
Solve a Poisson equation for the “magnetic charge”: 
Then clean the divergence field: 
But: very expensive to solve elliptic PDE, and may smooth discontinuities in B. 

�� = r ·B
B ! B �r�

Dedner’s scheme (Dedner et al. 2002): introducing a general Lagrangian 
multiplier, transporting div(B) errors away. Reasonably robust in most cases. 



Constrained transport (CT) 
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Ez,i+1/2,j-1/2,k 

Ez,i-1/2,j+1/2,k 

Ex,i,j+1/2,k-1/2 

Ex,i,j+1/2,k+1/2 

Ey,i+1/2,j,k-1/2 

Ey,i+1/2,j,k+1/2 
Magnetic fields defined at face-
center, area-averaged: 

(B
x

)
i+1/2,j,k =

1

�y�z

Z

S

B
x

(y, z)dydz

Electromotive forces (vxB) defined 
at edges, line-averaged: 

(E
x

)
i,j+1/2,k�1/2 =

1

�x�t

Z
E

x

(x)dxdt

Bn+1
x,i+1/2,j,k = Bn

x,i+1/2,j,k � �t

�y
(En+1/2

z,i�1/2,j+1/2,k � En+1/2
z,i�1/2,j�1/2,k) +

�t

�z
(En+1/2

y,i�1/2,j,k+1/2 � En+1/2
z,i�1/2,j,k�1/2)

Evolve magnetic field via Stoke’s law: 
@

@t

Z

S
B · dS = �

Z

L
E · dl

These equations are exact: no approximations. 

(Evans & Hawley, 1988) 



Constrained transport (CT) 
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Ez,i+1/2,j-1/2,k 

Ez,i-1/2,j+1/2,k 

Ex,i,j+1/2,k-1/2 

Ex,i,j+1/2,k+1/2 

Ey,i+1/2,j,k-1/2 

Ey,i+1/2,j,k+1/2 

Main challenge: construct electric fields at cell edges (3D) or corners (2D). 

Div (B)=0 is preserved to machine 
accuracy:  

r ·B =
B

x,i+1/2,j,k �B

x,i�1/2,j,k

�x

+
B

y,i,j+1/2,k �B

x,i,j�1/2,k

�x

+
Bz,i,j,k+1/2 �Bz,i,j,k�1/2

�x

Updates in Div(B) corresponds to 
differences in the EMFs that cancel exactly.  

By arithmetic averaging the EMFs returned from the Riemann solvers (at face 
centers), the EMFs are not properly upwinded. 
Need to reconstruct the EMF at the corners (Gardiner & Stone, 2005). 



Code test: linear wave convergence 
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Solid: Roe solver 
Dashed: HLLD solver 
Dotted: HLLE solver 

+3rd order reconstruction 

With the ATHENA code: 

(Stone+ 2008) 

Initialize a pure eigenmode, 
and measure the L1 error 
after one wave period: 
Quantitative test of the 
accuracy of the scheme. 



Code test: shock tube 
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HLLD solver 
with 3rd order 
reconstruction: 
all 7 waves are 
captured well.  

RJ2a shocktube 
(Ryu & Jones, 95) 
test: all 7 MHD 
waves are 
present. 



Code test: field loop advection 
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Very sensitive test of the constrained 
transport algorithm.  

Initial: 

After two periods: 

Current density: 

http://www.astro.princeton.edu/~jstone/Athena/tests/index.html 



Code test: Orszag-Tang vortex 
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Standard test problem for 
transition from subsonic to 
supersonic 2D MHD 
turbulnce, after Orszag & 
Tang, 1998. 

Shock-shock interaction, 
effect of div B error on 
evolution. 



Add more physics 

n  Depending on the problem, adding more physics can require 
just small changes, or a complete rewrite of the algorithm. 
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1). Simple changes: 

Adding local source terms (e.g., cooling, thermal relaxation). 

Adding flux-divergence terms (e.g., viscosity, resistivity). 
Add terms requiring elliptic solvers (e.g., self-gravity). 

2). Modest changes: 

3). Complete re-write: 

Adding new dynamical equations (e.g., special/general relativity, cosmic-ray 
particles, radiation). 



Add more physics 

n  Simple source terms (cases 1, 2) are usually added via operator 
splitting: 
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Stability issues can be addressed using implicit methods. 

@U

@t
+r · F = SFor equation: 

Formally, operate splitting makes the scheme first order in time. 

Higher-order accuracy can be achieved  using multi-step methods (e.g., RK) 

n  New dynamical equations (case 3) are solved separately, which 
then supply source terms to the MHD equations. They can be 
handled either by operator splitting or multi-step methods.  

Solve it by sequentially solving two separate equations: 

@U

@t
+r · F = 0

@U

@t
= Sand 



Example: resistivity 
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Jz,i+1/2,j-1/2,k 

Jz,i-1/2,j+1/2,k 

Jx,i,j+1/2,k-1/2 

Jx,i,j+1/2,k+1/2 

Jy,i+1/2,j,k-1/2 

Jy,i+1/2,j,k+1/2 
Operator split for resistivity: 

@B

@t
= �r⇥ (⌘J)

The overriding concern to keep 
div(B)=0 suggests CT differencing:   

Define J at cell edges => 
resistive EMF = ηJ.  

J can be easily obtained by taking the 
curl face-centered B field.  

CFL condition for a diffusion equation 
can be much more restrictive: (D: dimension) �t⌘  �x

2

4D⌘

Timestepping issue can be alleviated using sub-cycling or super-timestepping 



Other methods for computational MHD 
n  Finite-difference method 

n  Spectral method 

n  Smoothed particle (magneto-)hydrodynamics 

n  Moving-mesh/meshless MHD 
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Can achieve very high order accuracy for smooth flows, but requires artificial and hyper 
viscosity/resistivity to stabilize the code. Poor performance at strong shocks. 
Example: Pencil code 

Usually for incompressible/anelastic flow (filter out sound waves). Convergence is 
exponential. Main application: atmosphere, stellar interior, (occasionally) accretion disks. 
Example: Snoopy, Dedalus 

Mesh-free Lagrangian method, mostly for hydrodynamic applications, but recent 
development include magnetic fields with divergence cleaning. Very flexible to handle 
flows with large dynamical range, but has issues dealing with shocks and turbulence. 
Example: Phantom code 

Computation based on unstructured Lagrangian points. Partition the volume and use 
Riemann solvers (fully conservative). Implementing CT is possible but very difficult, 
mostly use divergence cleaning. Reduced advection error but enhanced grid noise. 
Example: Arepo, Gizmo 



Summary 

n  Computational MHD is an important tool to study a wide 
range of astrophysical plasma phenomena. 

n  MHD equations are hyperbolic conservation laws 
n  Godunov method: fully conservative 

n  Preserving div(B)=0 is crucial:  

n  A wide variety of MHD codes are developed, with pros 
and cons, and with more capabilities to handle more 
complex problems! 
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Main idea: reconstruct-evolve-average, with proper upwinding. 
Shock capturing using Riemann solvers. 

Use divergence cleaning or constrained transport. 


