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Plasma Scales

Debye Shielding and Debye Length

Consider a background plasma of protons and electrons. It is neutral, homogeneous, with number

density for both species being n0, and has temperature T . There is no background electric or magnetic

field. Now we insert a single, fixed test charge Q into the plasma and study how the plasma responds.

We expect the mean density of electrons and protons to vary as smooth functions of radius r from the

test charge, ne(r) and np(r). The electrostatic potential Φ(r) outside of the test charge satisfies Poisson’s

equation

∇2Φ = −4π(np − ne)e − 4πQδ(r) . (1)

The plasma is in thermal equilibrium, so that the density distribution follows the Boltzmann law. A

proton at radius r from the test charge has an electrostatic potential energy eΦ(r). Correspondingly, the

number densities are modified by the Boltzmann factor exp(eΦ/kBT ) (assuming Φ = 0 at r = ∞)

np = n0 exp(−eΦ/kBT ) ≈ n0(1− eΦ/kBT ) ,

ne = n0 exp(+eΦ/kBT ) ≈ n0(1 + eΦ/kBT ) ,
(2)

where we have made a Taylor expansion of the Boltzmann, valid for eΦ ≪ kBT . Inserting it back to the

Poisson equation, we obtain

∇2Φ =
8πn0e

2

kBT
Φ− 4πQδ(r) . (3)

Note that without the plasma, the solution is simply Φ = Q/r. The additional term in the above equation

reflects shielding of the test charge by the plasma. The solution turns out to be

Φ =
Q

r
exp(−

√
2r/λD) , (4)

where

λD ≡
(

kBT

4πn0e2

)1/2

= 6.9

(

T/K

n0/cm−3

)1/2

cm (5)

is called the Debye length. Thus, the test charge Q embedded in a plasma carries a cloud of particles

with an excess of opposite charges, whose size is on the order of λD, and this cloud completely shields

the test charge at distances r & λD.

While we have assumed Q to be a test charge of external origin above, it can equally be a plasma

electron/proton itself. One can consider each electron/ion as carrying its own cloud of opposite charges,

and in the mean time, each of them contributes to the clouds of its neighboring particles. Typically, the

Debye cloud contains huge number of particles, with almost the same number of electrons and ions. It is
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the tiny, time-averaged difference between the two that results in the exponential decay of the electrostatic

potential.

We can perform a similar analysis on charge neutrality. Suppose there is a perturbation leading to

an imbalance of charge density δρ = e(δnp − δne). The resulting electrostatic potential satisfies

∇2Φ = −4π(δnp − δne)e . (6)

Of course, charge perturbation depends on scales. Let’s say we are interested in scale L. By dimensional

analysis, we have ∇2Φ ∼ δΦ/L2. Note that in weak field, we have δne ∼ n0eδΦ/kBT . This leads to

∣

∣

∣

∣

δnp − δne

δne

∣

∣

∣

∣

≈
δΦ/(4πeL2)

n0eδΦ/kT
≈

λ2

D

L2
(7)

From this analysis, we can say that fluctuation in charge density is strong at scales L . λD, while the

plasma is quasi-neutral at scales L ≫ λD. We can thus consider λD as the electrostatic correlation length

in a plasma.

Plasma Parameter and Collective Behavior

Note that in the above analysis of Debye shielding, we have implicitly assumed that there are many

particles of opposite signs in the shielding cloud so that the electrostatic potential is a smooth function

of r. The mean number of electrons in a Debye cloud is

ND ≡ n0

4π

3
λ3

D . (8)

This is called the Debye number. A alternative definition that is often quoted is the plasma parameter

Λ ≡ 4πn0λ
3

D =
(kBT )

3/2

(4πn0)1/2e3
≈ 4.1× 103

(T/1 K)3/2

(n0/cm−3)1/2
. (9)

We now discuss the significance of this number, and show that when this number is large, inter-particle

interactions are unimportant, leading to collective behavior.

To begin with, we introduce the following two length scales. First, the mean distance between particles

is

rd ≈ n
−1/3
0

. (10)

Second, we consider the scale below which Coulomb interaction becomes important. This happens when

the Coulomb potential energy, e2/r, becomes comparable or stronger than particle kinetic energy, ∼ kBT .

Equating the two leads to

rc ≈
e2

kBT
. (11)

The plasma parameter is closely related to the ratio of rd/rc:

Λ =
λD

(4πn0λ2

D)−1
=

λD

(kBT/2e2)−1
≈

λD

rc
≈

1√
4π

(

rd
rc

)3/2

. (12)

Now it becomes clear that if rd ≪ rc (or Λ ≪ 1), kinetic energies of individual particles are small

compared with the energy from Coulomb interactions. In other words, charged particles are dominated by
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one another’s electrostatic influence. Such plasmas are considered strongly coupled. On the other hand,

if rd ≫ rc, strong Coulomb interactions between particles are relatively rare. Such plasmas are called

weakly coupled. In this case, since Λ ≫ 1, a large number of particles are responsible for a Debye cloud.

This means that a tiny adjustment in particle distributions is sufficient to account for Debye shielding,

which allows all particles to behave collectively (i.e., move together). It is this weakly coupled/collective

regime that we shall consider in this course.

Plasma Oscillation, Plasma Frequency, and Skin Depth

Plasma oscillation, the relative oscillation of the plasma’s electrons and ions, is the most fundamental

phenomenon in plasma physics. It is also the most fundamental manifestation of plasma collective

behavior. Consider a slab of plasma. Suppose for the moment the protons are all fixed and we displace

all electrons rightward (in x) by a small amount ξ. This would create a net positive charge per unit area

of σ = en0ξ on the left and the same amount of net negative charge on the right. This produces an

electric field

E = 4πσ = 4πen0ξ . (13)

This electric field pulls on both the ions and the electrons in the plasma. But, because protons are much

heavier, their acceleration is negligible compared with that of electrons, which we focus on. We have

d2ξ

dt2
= − e

me
E = −4πe2n0

me
ξ . (14)

Since this a harmonic oscillator equation, the electrons oscillate sinusoidally with ξ = ξ0 cos(ωpet), at

(electron) plasma frequency

ωpe ≡

√

4πe2n0

me
= 5.64× 104

(

n0

1 cm−3

)1/2

s−1 . (15)

Note that this frequency depends only on the plasma density n0 but not on temperature or on the strength

of magnetic field if present. Plasma oscillation is also called Langmuir waves, after Irving Langmuir. Note

that if we define electron thermal speed

ve = (kBT/me)
1/2 , (16)

then we have

ωpe = ve/λD . (17)

In other words, a thermal electron travels about one Debye length in one electron plasma period. By the

same token, we can consider ω−1

pe as the electrostatic correlation time.

Plasma frequency depends on the mass of the charged particles. The electron plasma frequency, being

the fastest and most fundamental, is generally just called the plasma frequency. There is the ion plasma

frequency

ωpi ≡

√

4πe2n0

mi
=

√

me

mi
ωpe = 1.32× 103

(

n0

1 cm−3

)1/2

s−1 . (18)
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Similarly, a thermal ion travels one Debye length in one ion plasma period. The ion plasma frequency is

also related to ion acoustic waves that will be covered later in the course.

Related to the plasma frequencies is another useful length scale, called the skin depth, or inertial length.

The electron skin depth is defined as

de ≡ c/ωpe = 5.3

(

n0

1 cm−3

)

−1/2

km . (19)

Electromagnetic waves cannot propagate in a plasma at frequencies below ωpe. In reality, such waves

would be damped in just one plasma oscillation period, over which time the wave can propagate over a

distance of de. It is a fundamental scale when we discuss electromagnetic waves in a plasma. Also note

that λD < de because ve < c.

Analogously, there is the ion skin depth, also known as the ion inertial length, defined as

di ≡ c/ωpi = 230

(

n0

1 cm−3

)

−1/2

km . (20)

It characterizes the scale blow which ions become decoupled with the electrons and magnetic fields become

frozen into the electron fluid rather than the bulk plasma. This will become clear when we discuss the

generalized Ohm’s law later in the course.

4


