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Accretion Disks

Accretion disks have been constant main themes of astrophysical research, and many aspects of

accretion disks are covered in other astrophysics courses. One may consult an early review by J. E.

Pringle (1981, ARA&A, 19, 137), and more recent book Accretion Power in Astrophysics by J. Frank,

A. King and D. Raine (2002, Cambridge Univ. Press) for most comprehensive reviews of accretion disk

physics and observational phenomenologies. Here we only focus on two fundamental MHD processes that

play a crucial role in disk angular momentum transport, namely, the magnetorotational instability (MRI)

and MHD disk winds.

Angular momentum transport in accretion disks

The set of conservative MHD equations in Cartesian coordinates describe the conservation of mass,

momentum and energy. For accretion disk problems, it is the most natural to work in cylindrical co-

ordinates, where the φ-component of the momentum equation essentially expresses the conservation of

angular momentum. Recall the general form of momentum equation in conservative form

∂t(ρv) +∇ ·M = −ρ∇Φ (1)

where Φ is the external gravitational potential (from a point mass in the accretion disk problem), and M

is the momentum flux tensor

M ≡ ρvv −
BB

4π
+

(

P +
B2

8π

)

I . (2)

In cylindrical coordinates, the momentum equations become

∂t(ρvR) +
1

R
∂R(RMRR) +

1

R
∂φMφR + ∂zMzR =

1

R
Mφφ − ρ∂RΦ , (3)

∂t(ρvφ) +
1

R2
∂R(R

2
MRφ) +

1

R
∂φMφφ + ∂zMzφ = − ρ

R
∂φΦ , (4)

∂t(ρvz) +
1

R
∂R(RMRz) +

1

R
∂φMφz + ∂zMzz = −ρ∂zΦ . (5)

Note that in the first equation, the centrifugal force v2φ/R is reflected in the Mφφ term which balances

gravity from the central object. The φ-momentum equation can further be reduced to

∂t(ρRvφ) +
1

R
∂R(R

2
MRφ) +

1

R
∂φ(RMφφ) + ∂z(RMzφ) = −ρ∂φΦ , (6)

which essentially expresses angular momentum conservation.

Now let us assume the disk is thin and integrate this equation over height and azimuth. Note that the

∂φ terms vanish after integration over φ, and the diagonal component of M is irrelevant to the angular

momentum fluxes. The result is

∂(2πRΣj0)

∂t
+

∂

∂R

[

2πR2

∫

∞

−∞

dz

(

ρvRvφ − BRBφ

4π

)]

+ 2πR2

(

ρvzvφ − BzBφ

4π

)∣

∣

∣

∣

∞

−∞

= 0 , (7)

1



where j0 ≈ vKR is the specific angular momentum at radius R, Σ =
∫

ρdz is the disk surface density,

and the over line denotes the azimuthal average. The radial and azimuthal velocities can be further

decomposed into vR = vR0 + δvR, vφ = vφ0 + δvφ, where subscript “0” represents the mean, and δ

represents the fluctuations.

∂(2πRΣj0)

∂t
+
∂(Ṁaccj0)

∂R
+
∂

∂R

[

2πR2

∫

∞

−∞

dz

(

ρδvRδvφ−
BRBφ

4π

)]

+2πR2

(

ρvzvφ−
BzBφ

4π

)
∣

∣

∣

∣

∞

−∞

= 0 , (8)

where Ṁacc = 2πR
∫

ρvR0dz is the accretion rate. Note that accretion corresponds to Ṁacc < 0.

The terms in the first bracket denote angular momentum flux in the radial direction. They are called

the Reynolds stress and Maxwell stress, respectively. Whether this flux leads to accretion is determined

by the sign of its radial gradient. Driving accretion requires outward transport of angular momentum,

leading to the accretion of most of the disk mass, with a small amount of the outer disk mass receiving

angular momentum and spread out. Radial transport of angular momentum is also called “viscous

transport”, because a viscous fluid can supply the Reynolds stress from Keplerian shear. However,

in astrophysical disks, microscopic viscosity is too small to be relevant, and generating such stresses

generally requires turbulence. There has been a long debate whether a pure hydrodynamic mechanism

can become unstable to produce turbulence, but most recent laboratory experiments have demonstrated

that Keplerian rotation is stable even at very high Reynolds numbers, consistent with Rayleigh criterion.

Since the (re-)discovery of the magneto-rotational instability (MRI) by Balbus & Hawley (1991), the

community has quickly arrived at the consensus that MRI is the most powerful mechanism of driving

turbulence in most accretion disks and to transport angular momentum. It is common to parameterize

the stress using the α prescription (Shakura & Sunyaev, 1973), writing

ρδvRδvφ − BRBφ

4π
≡ αP ≈ αρc2s , (9)

where cs is the isothermal sound speed. The dimensionless α parameter provides a very useful for the

efficiency of angular momentum transport. Typical values of α inferred from observations is of the order

0.1 (King et al., 2007).

The terms in the second bracket denote angular momentum flux in the vertical direction through disk

surface, carried by a disk wind. Note that the ρvzvφ term simply represents the loss of angular momentum

possessed by the outflowing materials (since vφ ∼ vK). In other words, no additional angular momentum

is extracted from the disk. On the other hand, the BzBφ term represents the extraction of excess angular

momentum from materials still residing in the disk. This is the essence of angular momentum transport

by an MHD wind.

Magneto-rotational Instability

A very concise and physically intuitive description of the MRI physics with can be found in the

scholarpedia article by Steven A. Balbus. Here we provide a more formal derivation using Eulerian

approach.

We consider the local shearing-sheet approximation (Goldreich & Lynden-Bell, 1965) of the MHD

equations. In this approximation, we take a local patch of a disk centered on radius R0, and work in
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a frame corotating with the disk at this radius, which has angular velocity ΩK . The advantage of this

approach is that we can ignore disk curvature, and use the Cartesian coordinate system. By convention,

x, y, and z correspond to radial, azimuthal and vertical dimensions, with x = 0 at R = R0, and ΩK

in the ez direction. Velocity v in this frame is the velocity relative to rotation velocity at R0. In this

corotating frame, two non-inertial forces must be included, namely, the Coriolis force 2v ×ΩK and the

centrifugal force Ω2

K(R0 + x)ex. In addition, we expand the gravitational force around this radius (here

we ignore the vertical component of gravity)

F g(x) = − GM

(R0 + x)2
ex ≈ −GM

R2
0

(

1− 2
x

R0

)

ex = (−Ω2

KR0 + 2Ω2

Kx)ex . (10)

Having all the forces combined, MHD equations in a shearing-sheet read

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v = −∇P

ρ
+ [2v ×ΩK + 3Ω2

Kxex] +
1

4πρ
(∇×B)×B ,

∂B

∂t
= ∇× (v ×B) .

(11)

The source terms on the right hand side of the momentum equation correspond to Coriolis force and

tidal force, respectively. We have ignored the energy equation since it is irrelevant to the MRI physics.

In the background state, let everything be uniform with ρ = ρ0, P = P0. There is a background vertical

magnetic field B = B0ez. The background velocity follows from the balance between the Corilois and

tidal forces, giving Keplerian rotation

v0 = −
3

2
Ωxey . (12)

The physics of the MRI does not involve compressible modes. We thus consider only incompressible

perturbations, namely, ρ = ρ0 being constant. We write v = v0 + δv, and B = B0ez + δB. To the first

order, the perturbation equations read

∇ · (δv) = 0 ,

∂δv

∂t
= −∇δP

ρ0
− 1

2
ΩKδvxey + 2ΩKδvyex +

1

4πρ0
(∇× δB)×B0 ,

∂δB

∂t
= ∇× (δv ×B0)−

3

2
ΩKδBxey .

(13)

We assume perturbations are axisymmetric in the form of exp (ikz + σt). Furthermore, we nondimen-

sionalize the variables as follows

σ̃ ≡ σ/ΩK , ṽ ≡ v/vA , b ≡ B/B0 , k̃ ≡ kvA/ΩK , (14)

where the background Alfvén velocity vA = B0/
√
4πρ0. Without loss of clarity, however, we omit the˜

sign in the derivation that follows.

The continuity equation gives

kδvz = 0 , or δvz = 0 . (15)

In fact, this relation is decoupled from the rest of the equations and is unused.
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For the momentum equation, the pressure perturbation is along the direction k, and it suffices to

consider perturbations perpendicular to k (to get rid of the pressure term):

σ(k × δv)− 2δvykey − δvxkex/2 = ik(k × δb) , (16)

which can be rewritten as
(

σ −2

1/2 σ

)(

δvx

δvy

)

= ik

(

δbx

δby

)

. (17)

Note that in the hydrodynamic limit, no magnetic field is involved and hence δbx = δby = 0. The

above equations simply describe epicyclic oscillation, requiring σ2 = −1, i.e., there is no instability. The

oscillation frequency is κ = ΩK for Keplerian rotation.

For the perturbation to the induction equation, we obtain

σδb+ (3/2)δbrey = ik × (δv × ez) . (18)

which can be rewritten as
(

σ 0

3/2 σ

)(

δbx

δby

)

= ik

(

δvx

δvy

)

. (19)

The dispersion relation can be obtained by combining equations (17) and (19), and requiring the

determinant of the resulting matrix to vanish. We can obtain

σ4 + σ2(2k2 + 1) + k2(k2 − 3) = 0 . (20)

This relation has real and positive roots (unstable) when 0 < k2 < 3, given by

σ2 =
−(2k2 + 1) +

√
16k2 + 1

2
. (21)

By taking derivative on k, the fastest growth rate is achieved at k2 = 15/16, with σ = 3/4. Restoring

physical units, the range of unstable wavenumber is 0 < k < kc, where kc =
√
3ΩK/vA is called the

critical wavenumber. The most unstable wavenumber is km =
√

15/16ΩK/vA, at which the growth rate

reaches maximum value of σmax = (3/4)ΩK .

In the derivation above, we have restricted ourselves to Keplerian disks with Ω(R) ∝ R−3/2. For more

general rotation profiles, the dispersion relation reads

σ4 + σ2[κ2 + 2(kvA)
2] + (kvA)

2

[

(kvA)
2 +

dΩ2

d lnR

]

= 0 , (22)

where κ2 ≡ 4Ω2+dΩ2/d lnR = d(R2Ω)2/d lnR is epicyclic frequency squared, with κ = ΩK for Keplerian

rotation. Thus, the criterion for instability is given by

dΩ

dR
< 0 . (23)

This is in stark contrast with the Rayleigh criterion in the hydrodynamic limit, where shear-flow be-

comes unstable when d(R2Ω)/dR < 0 (i.e., epicyclic frequency becomes imaginary), which is hopeless for

accretion disks.
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It is worth noting that the stability criterion (23), and the fastest growth rate σmax has no dependence

on magnetic field strength. Therefore, introduction of a vertical magnetic field, no matter how weak it is,

would completely change the stability criterion of the flow and yield exponential growth with e-folding

time being almost the dynamical time! This apparent dilemma is resolved by noting that as B0 → 0, the

most unstable wavelength shifts towards k → ∞. At certain point before B0 reaching zero, the dispersion

relation above would fail because ideal MHD is no longer applicable at very small scales (e.g., resistive

dissipation, or kinetic effects).

MHD Disk Winds

MHD disk winds fall into a broad subject of MHD winds and jets produced by rotating objects with

magnetic fields anchored on them. Other examples include stellar winds, pulsar winds, jets from gamma-

ray burst, etc. The article by H. C. Spruit (1996, astro-ph 9602022) provides a very pedagogical review

of the basic physics of MHD winds. Here we simply introduce the fundamental elements of the MHD

disk wind theory.

The general properties of MHD winds can be obtained from considering steady-state, axisymmetric

MHD equations. We can write the magnetic and velocity fields

B = Bp + Bφeφ , v = vp +RΩ(R)eφ , (24)

where subscprit p denotes poloidal component, eφ is a unit vector along the toroidal direction, R is

cylindrical radius, and Ω is angular velocity of the flow.

By axisymmetry and ∇ ·Bp = 0, poloidal field can be expressed in terms of a flux function

Bp =
1

R
∇ψ × eφ . (25)

Obviously, the flux function is constant along field lines

Bp · ∇ψ = 0 . (26)

Thus, ψ can be considered as a label of individual field lines.

In ideal MHD, the induction equation is given by

∇× [(vp + vφeφ)× (Bp +Bφeφ)] = 0 . (27)

Equivalently, we have

(vp ×Bp) + (vφeφ ×Bp +Bφvp × eφ) = ∇f , (28)

where f is an axisymmetric scalar function.

By axisymmetry, the toroidal component in (28) must be zero, hence

vp ×Bp = 0 , → vp = αBp , (29)

where α is a scalar. Using this result, consider the dot product of Bp with (28), we find Bp · ∇f = 0.

This means that f is constant along poloidal field lines, hence we can think of f as a function of ψ.
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Taking the cross product of eφ with (28), and using vp = αBp, we obtain

Ω− αBφ

R
=

df

dψ
≡ ω , (30)

where ω is constant along a particular field line. Note that when α = 0 (no mass loading), equation (30)

reduces to Ferraro’s law of isorotation Ω = ω. Physically, one expects Bφ = 0 at the disk midplane by

symmetry. Therefore, ω is the angular velocity of the field line at the disk midplane.

From the continuity equation, we have

∇ · (ρv) = ∇ · (ραB) = B · ∇ k

4π
= 0 , (31)

where

k ≡ 4πρα =
4πρvp
Bp

(32)

being constant along a field line. The physical meaning of k is obvious: it gives the ratio of mass flux to

magnetic flux.

With the results above, we see that along a particular field line, the flow velocity can be conveniently

expressed as

v =
kB

4πρ
+ ωReφ . (33)

Therefore, in the frame corotating with the foot point of a field line, the flow is everywhere parallel to

the magnetic field.

The toroidal component of the momentum equation can be written as (in cylindrical coordinate)

R

[

(∇×B)×B

4π

]

t

= ρv · ∇(ΩR2) . (34)

With the help of equation (33), one finds

B · ∇
[

RBφ − kΩR2

]

= 0 , (35)

Therefore, we can define

l ≡ ΩR2 − RBφ

k
= ΩR2 − RBφBp

4πρvp
. (36)

The physical meaning of l is simply the specific angular momentum in the wind flow, which is conserved

along a field line. In particular, the factor BφBp directly corresponds to the BφBz term in the angu-

lar momentum conservation equation (8), expressing angular momentum exchange between matter and

magnetic fields via the magnetic torque.

One can substitute Bφ from equation (33) to equation (36), and using equation (32) to obtain

vφ − ωR =
l − ωR2

R(1− 4πρ/k2)
. (37)

The right hand side of the equation is singular when 4πρ = k2, i.e., v2p = B2
p/4πρ = v2Ap. This corresponds

to the Alfvén point, where the poloidal flow velocity equals to the poloidal Alfvén speed vAp. The
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cylindrical radius of the Alfvén point, RA, is called the Alfvén radius. For the flow to pass through the

Alfvén point smoothly, the numerator of the above equation must vanish, which yields

l = ωR2

A . (38)

The Alfvén radius characterizes the efficiency of the wind for extracting disk angular momentum.

Since in general ω ≈ ΩK , the excess angular momentum per unit mass in the wind is ΩK(R2

A − R2
0)

(where R0 is the radius of the wind footpoint), which is extracted from the disk. Let Ṁacc be the

wind-driven accretion rate at radius R0. Angular-momentum conservation leads to

Ṁacc

dj

dR
=
dṀwind

dR
ΩK(R2

A −R2

0) , (39)

where j(R) ≡ ΩKR
2 is the specific angular momentum in the disk, and Ṁwind(R) denotes the cumulative

mass loss rate from the origin to disk radius R. Noting that d ln j/d lnR = 1/2 in Keplerian disks, we

obtain

ξ ≡ dṀwind/d lnR

Ṁacc

∣

∣

∣

∣

R=R0

=
1

2

1

(RA/R0)2 − 1
. (40)

This number is sometimes called the “ejection index”, and we see that the ratio of wind mass loss rate

to wind-driven accretion rate is intimately connected to the Alfvén radius.

Assuming adiabaticity, the energy equation reads

∇ ·
[

ρv

(

1

2
v2 + h+Φ

)

+
B2

v − (B · v)B
4π

]

= 0 , (41)

and after some manipulation using (30), we find

B · ∇
[

k

(

v2

2
+ h+Φ

)

− ωRBφ

]

= 0 , (42)

which defines a fourth conserved quantity

e ≡ v2

2
+ h+Φ− ωRBφ

k
, (43)

being the specific energy along a field line. In the above, h ≡
∫

dP/ρ is specific enthalpy, Φ is gravitational

potential, and the last term represents the work done on the streaming gas by magnetic torque.

The energy equation (43) can be combined with the angular momentum equation (36) to yield the

Bernoulli equation

E ≡ e− ωl =
v2

2
− ωRvφ + h+Φ =

v2p + (vφ − ωR)2

2
+ h+Φeff , (44)

where Φeff ≡ Φ − ω2R2/2 is the effective potential, and E again is a constant along any field line. An

important feature about the Bernoulli equation is that E is independent of field variables.

In sum, along a field line, the MHD wind is characterized by four constants of motion as defined

in equations (30), (32), (36) and (43). These four constants are not independent of each other. In

particular, the axisymmetric MHD wind problem has two critical points, which occur when poloidal flow
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speed matches the slow and fast magnetosonic speeds propagating along the field. The requirement that

the flow pass smoothly through each of these points imposes additional constraints that reduces two

degrees of freedom. The specific energy is essentially determined by conditions at the wind launching

region. See Spruit’s review for further details.

The four conservations equations discussed above completely specify wind properties along a pre-

scribed poloidal field line. But what determines the shape of the field lines? We need to solve the

cross-field force balance: the force balance perpendicular to each field line (or magnetic flux surface

ψ =const), which depends on the shape and wind properties along each field line, as well as neighbor-

ing field lines. Therefore, solving the structure of an MHD disk wind is intrinsically a global problem.

Mathematically, it is described by the Grad-Shafranov equation, which is a second-order non-linear par-

tial differential equation on the magnetic flux function ψ. It is of different types (elliptical/hyperbolic)

in between different critical surfaces, and is very challenging to solve. Special solutions has been ob-

tained by inserting additional ansatz that greatly simplify the equation, most notably the self-similar

“magneto-centrifugal” wind solution by Blandford & Payne (1982). More flexible wind solutions can

be obtained from MHD simulations. It is known that wind properties mainly depends on 1). strength

of poloidal magnetic field threading the disk, and distribution of magnetic flux; 2). thermodynamics

near the wind footpoint (launching region). Depending on the relative importance of magnetic field and

thermal pressure, the wind can be driven by centrifugal effect (for strong field with inclined poloidal field

geometry), or by magnetic pressure gradient of the toroidal field that is built up by twisting the poloidal

field (the weak poloidal field case). Because toroidal field becomes more and more dominant towards

larger distance, MHD winds can be self-collimated beyond the Alfvén point by “magnetic hoop stress”.
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