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Vlasov-Maxwell Equations and Cold Plasma Waves

The Vlasov-Maxwell equations

Consider a plasma as a collection of N charged particles, each particle i has position and velocity xi

and vi. By definition,

ẋi = vi , v̇i = ai =
q

m

(

E +
vi ×B

c

)

. (1)

Rather than solving this entire array of 6N equations, we simplify the problem by adopting a statistical

treatment based on the assumption that we do not distinguish between particles (of the same species),

if they are at about the same position and share about the same velocity. Hence, we define f(x,v, t) as

the particle distribution function, which represents the number density of particles found near the point

(x,v) in phase space. Specifically, the number of particles located within intervals d3x about x and d3v

about v is given by

dN = f(x,v, t)d3xd3v . (2)

The 6D space whose volume element is d3xd3v is called “phase space”.

If there were no particle creation or destruction (e.g., ionization/recombination), the total number

of charged particles must be conserved. Analogous to how we deal with conservation laws in MHD,

conservation of particles in phase space can be expressed as

∂f(X, t)

∂t
+

∂

∂X
(fẊ) = 0 , (3)

where X ≡ (x,v) is phase space coordinates and Ẋ = (v,a) is “velocity” in phase space. More explicitly,

that is
∂f

∂t
+∇ · (fv) +∇v · (fa) = 0 . (4)

Obviously, v has no dependence on x, hence ∇ · (fv) = v · ∇f . However, a does depend on v due to the

v ×B term. Fortunately, because ∇v · (v ×B) = (∇v × v) ·B − v · (∇v ×B) = 0, we can also take a

out from the the divergence operator. Thus, the conservation equation becomes

∂f

∂t
+ v · ∇f + a · ∇vf = 0 , (5)

or, written in more compact form,

Df

Dt
≡

(

∂

∂t
+ Ẋ

∂

∂X

)

f = 0 , (6)

where D/Dt is the convective derivative which follows particle trajectories in phase space. The result of

Df/Dt = 0 is known as Liouville’s theorem. It states that the distribution function f is constant along

particle trajectories in phase space (when ∇v · a = 0).
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Written in full, we have the kinetic equation describing the evolution of f :

∂f

∂t
+ v · ∇f +

q

m

(

E +
v

c
×B

)

· ∇vf = 0 . (7)

The driving force of evolution comes from acceleration a, which depends on fields E and B. Typically, the

electromagnetic fields are partially externally applied, and partially created by plasma charge and current.

Contribution from the latter can further be roughly divided into two parts. One is the collective response

of particles to electromagnetic fields, which is smooth; and the other part is from small-scale inter-

particle interactions in nature (i.e., Coulomb collisions within λD). In plasma physics, it is convenient

to combine the externally applied fields with fields generated by collective plasma response to evaluate

the acceleration a. In other words, we only consider the smooth part of the E, B fields (this is possible

because it does not depend on the exact particle location). The remaining part, force due to small-

scale fields from near-neighbor particle interactions, is considered as “collisions” and is reflected in an

unspecified term on the right side:

∂f

∂t
+ v · ∇f +

q

m

(

E +
v

c
×B

)

· ∇vf =

(

∂f

∂t

)

coll

. (8)

This is called the Boltzman Equation. When this term can be ignored (depending on the plasma pa-

rameters and the scales of the problem), we are left with the “collisionless Boltzman equation”, more

commonly referred to as the Vlasov equation.

Evolution of f in the Boltzman equation must be accompanied by the equations to evolve the fields,

described by Maxwell’s Equations.

1

c

∂E

∂t
= ∇×B −

4π

c
j , (9a)

1

c

∂B

∂t
= −∇×E , (9b)

∇ ·E = 4πρ , (9c)

∇ ·B = 0 . (9d)

Evolution of electromagnetic fields are coupled to electric charges and current densities ρ and j, which

are moments of the distribution function

ρ =
∑

species

q

∫

f(x,v, t)d3v ,

j =
∑

species

q

∫

vf(x,v, t)d3v .

(10)

Note that not all of Maxwell’s equations are independent. The induction equation (9b) implies divergence

free condition of the magnetic field (9d). Equations (9a) and (9c) imply charge conservation, but that is

already built-in to the Vlasov equation. Thus, only one of the two is needed. In particular, if no magnetic

field is involved, one can conveniently use (9c), and the corresponding modes are called electrostaticmodes.

Otherwise, one generally uses (9a) instead.
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The plasma dielectric tensor

Useful insight can be gained even without solving the Vlasov equation. From Maxwell’s equations

1

c

∂B

∂t
= −∇×E ,

1

c

∂E

∂t
= ∇×B −

4π

c
j .

(11)

Note that the “displacement current”, or the ∂E/∂t term, is ignored in MHD. Whether we would like to

keep it or not depends on the problem of interest. Retaining this term, one would recover electromagnetic

(light) waves and plasma oscillations, while removing this term one generally filters out these high-

frequency modes, and misses the electron-scale (skin depth de) physics.

Suppose the background plasma has a uniform field B0 and no electric field (we can always choose a

proper frame to satisfy this). Without loss of generality, we take B0 to be along the ez axis. Consider

perturbations in the general form of exp [i(k · x− ωt)], and we add subscript “1” to perturbed fields. The

above equations turn into

−
iω

c
B1 = −ik×E1 , (12a)

−
iω

c
E1 = ik ×B1 −

4π

c
j1 . (12b)

The current density j1 reflects the response of the plasma to electromagnetic perturbations, and

generally requires one to solve the Vlasov equation. The solution to this equation gives a relation between

j1 and E1. Once this relation is known, we can define the dielectric tensor ǫ as follows 1

ǫ ·E1 = E1 + i
4π

ω
j1 . (14)

In most plasma wave/instability problems, the main task generally involves the calculation of ǫ from the

Vlasov equation.

With ǫ at hand, Equation (12b) becomes

−
iω

c
ǫ ·E1 = ik ×B1 . (15)

Combining the two Maxwell equations, we obtain

k × (k ×E1) +
ω2

c2
ǫ ·E1 = 0 . (16)

Equivalently, we can write it in tensor form

LijEj = 0 , where Lij ≡ kikj − k2δij +
ω2

c2
ǫij . (17)

This equation has non-trivial solutions only when the determinant of the matrix Lij vanishes. This is a

polynomial equation for ω as a function of k. Note that the dielectric tensor ǫij is in general also a function

1Recall that in electrodynamics in continuum medium, the dielectric tensor is defined as

ǫ ·E = E + 4πP , (13)

whereP is called “polarization”, and associated with it is the polarization current j = ∂P /∂t.
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of ω and k. Each solution of ω(k) of this equation represents the dispersion relation of a particular wave

mode. Therefore, we can regard it as the general plasma dispersion relation for plasma waves of any

kind. In particular, when taking ǫ = 1 (no plasma current response), it describes the propagation of light

waves in vacuum. On the other hand, if no perturbations in magnetic fields are involved, such modes are

called electrostatic modes, and the dispersion relation is simply given by ǫ = 0.

Waves in cold plasmas

While plasma response should be rigorously derived from the Vlasov equation, the situation is greatly

simplified in a “cold” plasma, where particles have essentially no random velocities.2 Thus, the motions

of all electrons/ions in the wave field are identical. This means that treating individual particles species

as a (pressureless) fluid and solve for its motion is equivalent to solving the Vlasov equation.

Suppose that in the background state, the plasma is homogeneous with n0s being the number density

of species s, and all particles are static v0 = 0. Charge neutrality ensures that
∑

s n0sqs = 0. Perturbed

quantities are denoted with subscript “1”. Let background field B0 be along the ẑ direction. The response

from particle species s can be obtained from pressureless fluid equations. The linearized fluid equations

for individual particle species are

∂n1s

∂t
+ n0s∇ · v1s = 0 ,

∂v1s

∂t
=

qs
ms

(

E1 +
v1s

c
×B0

)

.
(18)

The perturbations will give a first-order current density

j1 =
∑

s

qs(n1sv0s + n0sv1s) =
∑

s

qsn0sv1s . (19)

Note that with v0 = 0, density perturbation does not enter the expression of j1. It suffices to consider

the momentum equation alone.

Let the perturbations be in the form of exp [i(k · x− ωt)]. The linearized momentum equation becomes

−iωv1s =
qs
ms

(

E1 +
v1s

c
×B0

)

. (20)

Unmagnetized modes

Without background magnetic fields, plasma response is simply given by

−iωv1s =
qs
ms

E1 , (21)

The net plasma current is given by

j1 =
∑

s

qsn0sv1s =
∑

s

i
nsq

2
s

ωms
E1 . (22)

Note that the phase of plasma current is offset from electric field. To find the dielectric tensor, we write

i
4π

ω
j1 = −

∑

s

4π

ω2

nsq
2
s

ms
E1 = −

∑

s

ω2
ps

ω2
p

E1 , (23)

2How cold is “cold”? Well, the answer can be problem dependent. The bottom line is, particle thermal velocity must

be much smaller than the phase velocity of the wave of interest.
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where ωps is the plasma frequency for species s. Because j1 ‖ E1, the dielectric tensor in this case is

simply a scalar, given by

ǫ = 1−
∑

s

ω2
ps

ω2
= 1−

ω2
p

ω2
, (24)

where ω2
p ≡

∑

s ω
2
ps ≈ ω2

pe.

Now we are ready to substitute ǫ back to (17) to find the dispersion relation. Without loss of generality,

let us take k to be in the ẑ direction, then (17) becomes









ǫ− n2 0 0

0 ǫ− n2 0

0 0 ǫ

















E1x

E1y

E1z









= 0 , (25)

where n ≡ kc/ω is called the refractive index.

Clearly, there are two types of modes. The dispersion relation for the first type is given by

ǫ = 0 , or ω2 = ω2
p . (26)

This mode simply describes plasma oscillations, also known as Langmuir waves. Since no magnetic field

is involved, it is an electrostatic mode. Also note that for this mode, only the ẑ-component of the electric

field is non-zero as seen from (25), thus k ‖ E1. This kind of wave is called a longitudinal wave. Langmuir

waves have phase velocity vph = ωp/k, but the group velocity is zero: there is no energy flux associated

with plasma oscillations.

For the second type of mode, the dispersion relation is given by

n2 = ǫ , or ω2 = ω2
p + k2c2 . (27)

In this mode, we have E1 ⊥ k. From (12), we also have B1 = (kc/ω)×E1, and hence B1 ⊥ k as well.

Therefore, this mode is an electromagnetic mode (which is a transverse wave), which is the counterpart

of light waves in vacuum. Clearly, the dispersion relation demands that ω > ωp: electromagnetic waves

at frequency ω < ωp can not propagate through the plasma. We also note that for this mode, the phase

velocity vph > c. However, it does not violate causality because information propagates at group speed,

which is

vg =
∂ω

∂k
=

(

1−
ω2
p

ω2

)1/2

c . (28)

We also note that from (25), there are two electromagnetic modes, and they are degenerate. These

properties are identical to light waves (e.g., linear/circular polarization). We finally comment that the

degeneracy is broken when magnetic fields are included. In this case, eigen modes are circularly polarized

modes, which propagate at different speeds, leading to a phenomenon known as Faraday rotation.

Low-frequency modes in a magnetized cold plasma

Including a background magnetic field makes the algebra much more complex. See textbook for

details. Here, we focus on waves at frequencies much lower than the electron cyclotron frequency, and
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the problem for evaluating plasma response is substantially simplified. Moreover, in this case, it suffices

to ignore the displacement current (when doing so, we no longer use the dielectric tensor ǫ).

Recall that the electron equation of motion is

−iωmeve = −e

(

E1 +
ve

c
×B0

)

. (29)

In the low-frequency limit, we can ignore the electron inertia term on the left hand side. This means

E1 +
ve

c
×B0 ≈ 0 . (30)

This is to be combined with the ion equation of motion

−iωmiv1i = e

(

E1 +
v1i

c
×B0

)

≈ e

(

v1i − v1e

c

)

×B0 =
j1 ×B0

nc
. (31)

At this point (after ignoring electron inertia and displacement current), we have essentially obtained the

so-called Hall-MHD equations (in cold plasma limit): electrons are considered as a massless, neutralizing

fluid, while ions carry all the inertia (so that fluid velocity is the ion velocity). The electron equation of

motion expresses the generalized Ohm’s law

E1 = −
v1e

c
×B0 = −

v1i

c
×B0 +

j1 ×B0

enc
, (32)

where the j1 ×B term is the Hall term, characterizing the electron-ion drift.

Combine the the above two equations with the induction equation, and j1 = (c/4π)ik×B, we obtain

the linearized equations for cold plasma waves in the low-frequency limit

−ωρv1 =
1

4π
(k ×B1)×B0 (33)

where ρ ≈ nmi is the fluid density.

−
ω

c
B1 = k ×

[

v1

c
×B0 − i

(k ×B1)×B0

4πen

]

. (34)

Now we consider waves propagating parallel to background magnetic field, with k = kez. In this case,

we see that both v1 and B1 are perpendicular to ez: the resulting waves are transverse. The linearized

equations reduce to

−ωρv1 =
kB0

4π
B1 ,

−
ω

c
B1 =

kB0

c
v1 − i

kB0

4πen
(k ×B1) ,

(35)

and further

(ω2 − k2v2A)B1 = ik2ω
B0c

4πen
(ez ×B1) = ik2v2A

ω

Ωi
(ez ×B1) , (36)

where Ωi = eB0/mic is the ion cyclotron frequency. Clearly, without the Hall term, we obtain the

dispersion relation of the Alfvén waves. For parallel propagation, there are two degenerate Alfvén modes

(shear and compressional). They can be decomposed into either two linear or two circular polarized
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modes. One of them would become the slow/fast magnetosonic mode for oblique propagation (depending

on plasma β). In the presence of the Hall term, however, the degeneracy is broken, and the eigen-vectors

of the two modes correspond to circular polarized waves at different phase speeds. Written in matrix

form, the above equation becomes

(

ω2 − k2v2A ik2v2A(ω/Ωi)

−ik2v2A(ω/Ωi) ω2 − k2v2A

)(

B1x

B1y

)

=

(

0

0

)

. (37)

The dispersion relation is obtained by requiring the determinant of the matrix on the left hand side to

be zero. The result is

ω2 − k2v2A = ±k2v2A
ω

Ωi
. (38)

When taking the + sign, the eigenvector has Bx = −iBy. When combined with the factor ei(kz−ωt), we

can see that it corresponds to right polarization as viewed from the observer. This mode is called the

electron whistler wave. When taking the − sign, the eigenvector has Bx = −iBy corresponding to right

polarization as viewed from the observer. This mode is called the ion cyclotron wave.

We can normalize the wave number by x ≡ kvA/Ωi = kdi (note that we have the identity for the ion

inertial length di = c/ωpi = vA/Ωi). The dispersion relation then becomes

ω

Ωi
=

x

2
(
√

x2 + 4± x) . (39)

where again ± sign corresponds to right/left polarization.

For the ion cyclotron wave, we see that the dispersion relation is that ω ≈ kvA when x ≪ 1, while

ω → Ωi as x → ∞. In other words, the ion cyclotron wave can not propagate at frequencies higher than

the ion cyclotron frequency. What happens at ω = Ωi is that the rotation of the electric vector matches

the ion gyro-motion, leading to constant acceleration of the ions and rapid wave damping/absorption.

For the electron whistler wave, we see that at x & 1, the dispersion relation is given by ω ∝ k2. In

other words, shorter-wavelength modes propagates faster. This mode is called the whistler wave because

historically, it was first encountered by radio operators who heard, in their earphones, strange tones with

rapidly changing pitch (descending). These turned out to be whistler modes excited by lightening in the

southern hemisphere, that propagate along the Earths magnetic field to the northern hemisphere. The

electron whistler wave, analogous to the ion cyclotron wave, can not propagate at frequencies higher than

Ωe, i.e., the electron cyclotron resonance. However, our approximation does not capture this resonance

because we have ignored electron inertia and displacement current.

The general case

Well, there are too many different regimes. See the textbook for details. The main results are nicely

summarized in the so-called Clemmow-Mullally-Allis (CMA) diagram, which shows the “wave-normal

surfaces”, which are polar plots of the wave phase velocity at fixed ω, as a function of obliquity θ (angle

between k and B). The attached CMA diagram is taken from Blandford & Thorne’s online book, whose

detailed figure caption is self-explanatory (in the plots, B is in the vertical direction). The two cases we

discussed above correspond to the two regimes in the lower bottom and upper right corners.
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Fig. 21.7: Clemmow-Mullally-Allis (CMA) Diagram for wave modes with frequency ω propagating
in a plasma with plasma frequencies ωpe, ωpp and gyro frequencies ωce, ωcp. Plotted upward is
the dimensionless quantity |ωce|ωcp/ω

2, which is proportional to B2, so magnetic field strength
also increases upward. Plotted rightward is the dimensionless quantity (ω2

pe + ω2
pp)/ω

2, which is
proportional to n, so the plasma number density also increases rightward. Since both the ordinate
and the abscissa scale as 1/ω2, ω increases in the left-down direction. This plane is split into sixteen
regions by a set of curves on which various dielectric components have special values. In each of
the sixteen regions are shown two or one or no wave-normal surfaces (phase-velocity surfaces) at
fixed ω; cf. Fig. 21.6a. These surfaces depict the types of wave modes that can propagate for that
region’s values of frequency ω, magnetic field strength B, and electron number density n. In each
wave-normal diagram the dashed circle indicates the speed of light; a point outside that circle has
phase velocity Vph greater than c; inside the circle, Vph < c. The topologies of the wave normal
surfaces and speeds relative to c are constant throughout each of the sixteen regions, and change as
one moves between regions. [Adapted from Fig. 6.12 of Boyd and Sandersson (1973), which in turn
is adapted from Allis, Buchsbaum and Bers (1963).]


