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Thermal Effects

Landau damping of Langmuir waves

To examine the complications associated with thermal effects, we restrict ourselves to an unmagnetized

plasma, focusing on the Langmuir waves, or plasma oscillations. Here, it suffices to solve equations for

the electrons only because ions barely move and mainly serve as a neutralizing background. The electron

background state is trivial, described by a homogeneous distribution function f0 = f0(v), with zero fields.

With small perturbations, we can write the distribution function as

f(r,v, t) = f0(v) + f1(r,v, t) . (1)

Since background field is zero, the evolution of f1 is simply governed by the linearized Vlasov equation,

together with an equation that determines the electric field E1 (the Poisson equation)

∂f1
∂t

+ v · ∇f1 −
e

m
E1 · ∇vf0 = 0 , (2)

∇ ·E1 = −4πe

∫

f1(x,v, t)d
3v . (3)

Without loss of generality, we assume perturbations in the form of ei(k·x−ωt), with k = kex. For

electrostatic perturbations, ∇×E1 = −(∂B/∂t)/c = 0, and hence E1 is also parallel to k. The linearized

Vlasov equation now becomes

−iωf1 + ikvxf1 −
e

m
E1

∂f0
∂vx

= 0 , (4)

or

f1 =
i

ω − kvx

e

m
E1

∂f0
∂vx

. (5)

Substituting the above to the Poisson equation, we obtain

kE1 = −4πe2

m
E1

∫

∂f0/∂vx
ω − kvx

d3v = −4πe2

m
E1

∫

F ′
0(vx)

ω − kvx
dvx , (6)

where F0(vx) =
∫

f0dvydvz is the reduced 1D electron distribution function.

More formally, the above equation can be reduced to ǫE1 = 0, with dielectric function ǫ defined as

ǫ(k, ω) = 1−
ω2
p

k2n0

∫

F ′
0(vx)

vx − ω/k
dvx . (7)

The dispersion relation is simply given by ǫ = 0.

How do we evaluate this integral? A mathematical difficulty arises at the singularity, ω = kvx. Clearly,

this corresponds to a resonance where particle velocity equals to the phase velocity of the wave (called
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Figure 1: Illustration of the Landau contour L in the complex v plane.

Landau resonance). The resolution of this difficulty is owing to Landau (1946), which is described in

detail in the textbook. Here we simply state the result.

To compute the dielectric function ǫ(k, ω), we hold k fixed and evaluate it as a function of ω, treating

ω as a complex number. While physically, vx is real, mathematically, we can consider the integrand as a

function of vx in the complex plane, which has a pole at vx = ω/k. The integral is to be performed along

the real axis, which is well defined when the pole is not at the real axis, either Im(ω) > 0, or Im(ω) < 0.

However, there is a discontinuous jump in between, as the pole moves across the real axis in the velocity

plane. Landau’s analysis shows that causality considerations requires that ǫ(k, ω) to be defined in the

upper half velocity plane [Im(ω) > 0] as in (8), and it is then analytically continued to the lower half

plane. In doing so, the integration path must be kept to be below the pole ω/k, as the pole moves into

the lower half velocity plane. This prescription of integration contour is called the Landau prescription,

and the contour is called the Landau contour, denoted by L, and is shown in Figure 1. The dispersion

relation is then expressed as

ǫ(k, ω) = 1−
ω2
p

k2n0

∫

L

F ′
0(vx)

vx − ω/k
dvx = 0 . (8)

In most situations, electrostatic waves are only weakly damped or unstable. We can write ω = ωR+iωI ,

with |ωI | ≪ ωR, so that wave amplitude changes very little over one period. In this case, we can expand

the dielectric function as follows

ǫ(k, ωR + iωI) ≃ ǫ(k, ωR) + iωI
∂ǫ

∂ω

∣

∣

∣

∣

ω=ωR

≃ ǫR(k, ωR) + i

[

ǫI(k, ωR) + ωI
∂ǫR
∂ωR

∣

∣

∣

∣

ω=ωR

]

, (9)

where in the second equality, we have used the fact that |ωI | ≪ ωR so that the ωI∂ǫI/∂ωR term is small

compared with the ǫR term. This equation expresses the dielectric function slightly away from the real

axis in terms of its value and derivative on and along the real axis. Specifically, the on-axis value can be

obtained directly from the Landau contour

ǫ(k, ωR) = 1−
ω2
p

k2n0
P
∫

F ′
0(vx)

vx − ωR/k
dvx − iπ

ω2
p

k2n0
F ′

0(ωR/k) . (10)

Here we introduce the Plemelj formula: for an analytical function f(x) that is continuous along the real

line

lim
ǫ→0+

∫

f(x)

x± iǫ
dx = ∓iπf(0) + P

∫

f(x)

x
dx , (11)
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where P demotes the Cauchy principle value

P
∫ b

a

f(x)

x
dx ≡ lim

ǫ→0+

[
∫ −ǫ

a

f(x)

x
dx+

∫ b

ǫ

f(x)

x
dx

]

. (12)

The dispersion relation ǫ = 0 requires that both the real and imaginary parts to vanish. For the real

part, we have

1−
ω2
p

k2n0
P
∫

F ′
0(vx)

vx − ωR/k
dvx = 0 , (13)

which determines ωR. For the imaginary part, we have

ωI = − πF ′
0(ωR/k)

∂
∂ωR

P
∫ F ′

0(vx)
vx−ωR/kdvx

. (14)

We see that wave damping/growth rate is proportional to the slope of the distribution function at the

resonant velocity ωR/k.

If we consider long-wavelength behavior (vph ≈ ωp/k ≫ vth, or kλD ≪ 1), we can expand the

denominator as
1

vx − ωR/k
≈ − k

ωR

[

1 +
kvx
ωR

+

(

kvx
ωR

)2

+

(

kvx
ωR

)3

+ ...

]

. (15)

Integrating by parts, the principle value component can be approximated by

P
∫ ∞

−∞

F ′
0(vx)

vx − ωR/k
dvx ≈ k2

ω2
R

∫ ∞

−∞

F0(vx)

[

1 + 2
kvx
ωR

+ 3

(

kvx
ωR

)2

+ ...

]

dvx . (16)

Now consider a Maxwellian distribution

f0(v) =
n0

(2πv2e)
3/2

exp (−v2/2v2e) , F0(vx) =
n0√
2πve

exp (−v2x/2v
2
e) , (17)

where ve =
√

kT/me is the electron thermal velocity. Plugging in to the above, we obtain

P
∫ ∞

−∞

F ′
0

vx − ωR/k
dvx ≈ n0

k2

ω2
R

(

1 +
3k2

ω2
R

v2e

)

, F ′

0(v) = − v

v2e
F0 . (18)

The real part of the dispersion relation becomes

1−
ω2
p

ω2
R

(

1 +
3k2

ω2
R

v2e

)

≈ 0 . (19)

Since we have assumed that ω/k ≫ ve, we see that to zeroth order, we simply have the dispersion relation

for plasma oscillations ω2
R = ω2

p. To the next order, we obtain

ω2
R ≈ ω2

p(1 + 3k2λ2
D) , (kλD ≪ 1) (20)

We see that thermal effect makes Langmuir waves dispersive, with a group velocity of

vg =
dωR

dk
≈ 3kλ2

Dωp = 3(kλD)ve . (21)

This is called the Bohm-Gross correction.
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For the imaginary part, it is straightforward to obtain using (15)

ωI(k) = −
√

π

8

ωp

(kλD)3
exp

[

− 1

2(kλD)2
− 3

2

]

, (22)

where we have used λD = ve/ωp. Being negative, it means that Langmuir waves are damped. This

collisionless damping phenomenon is called Landau damping. We see that the damping rate ωI is strongly

wavelength dependent, with ωI → 0 for k → 0, while damping rate approaches ωp for kλD ∼ 1 (at this

point our approximation that |ωI | ≪ ωR already fails). Thus, plasma oscillations are strongly damped

at Debye length scale. In other words, plasma oscillation can occur only at wavelength much larger than

λD. This is easily understood because at the phase speed of the wave at Debye length scale is comparable

to thermal speed, and are easily smeared out by thermal motions.

Physics of Landau damping

Mathematically, we have seen that Landau damping arises from the pole in the integral of ǫ at

v = ωR/k, which corresponds to particles in resonance with the wave. Physically, this phenomenon first

appears very puzzling: there is no dissipation in a collisionless system, yet waves are damped. This is

due to energy exchange between the waves and particles.

In our conventional analysis of waves and instabilities, we perform a Fourier transform in both space

and time, and analyze the wave modes in (k, ω) space. The underlying assumption is that each wave mode

makes particles oscillate around their unperturbed trajectories. Near the resonance, however, particles

are in phase with the wave and hence feel a constant acceleration/deceleration. To show this, let us

consider a test particle that travels very close to the phase speed of the wave. To the zeroth order,

particle velocity is v = v0, with x = x0 + v0t. To the next order we have

dv

dt
= − e

m
E0e

i(kx0+kv0t−ωt) . (23)

Solving this equation as an initial value problem, we find

v − v0 = − e

m

[

ei(kx0+kv0t−ωt) − eikx0

i(kv0 − ω)

]

. (24)

Near the resonance as kv0 − ω → 0, the above reduces to

v − v0 ≈ − e

m
E0te

ikx0 , (25)

showing that a particle with v0 close to ω/k is constantly accelerated/decelerated with time, gaining

or losing energy to the wave depending on its phase relative to the wave. For other particles that are

non-resonant, their response to the wave is oscillatory without energy exchange with the wave.

To understand the net direction of energy transfer, more detailed consideration is needed. From the

first order analysis above, we see that if we average over the spatial distribution of particles (assuming the

background distribution is uniform), then the net work done by field is zero. In fact, we must go to the

second order, calculate particle trajectories that are corrected by first-order velocities, and then average

over particle initial positions. This will show that the particles traveling slightly faster than the wave

4



gain energy in on average, while those traveling slightly slower than the wave lose energy on average.

The net energy gain or loss by resonant particles thus depends on the slope of the distribution function

at the resonance (see problem set).

Note that linear analysis fails for resonant particles, because their response are not oscillatory. The

wave damping rate, on the other hand, is correctly captured by the mathematical trick following Landau’s

procedure.

Ion-acoustic waves

Our analysis of Landau damping above considered only the electron plasma. Now we add back in the

ion component, and show that thermal effect introduces a new wave mode, the ion acoustic wave. We

start from the dispersion relation, where it is straightforward to add in the contribution from the ions

ǫ = 1 +
ω2
pe

kn0

∫

L

F ′
0e(vx)

ω − kvx
dvx +

ω2
pi

kn0

∫

L

F ′
0i(vx)

ω − kvx
dvx = 0 . (26)

We assume both electrons and protons follow an Maxwellian distribution, with temperatures Te and Ti.

Note that in general, the electron thermal velocity ve is much larger than the ion thermal velocity vi.

For the time being, let us search for waves whose phase velocity satisfies vi ≪ ω/k ≪ ve. Let us ignore

Landau damping (the imaginary part) for the moment. In the ion term, we expand the denominator that

includes the Bohm-Gross correction, while in the electron case, it suffices to just take −(kvx)
−1. Note

that for a Maxwellian distribution, F ′
0e(vx) = −vx/v

2
eF0e. Now the dispersion relation reads

ǫ = 1 +
ω2
pe

k2v2e
−

ω2
pi

ω2

(

1 + 3
k2v2i
ω2

)

= 1 +
1

k2λ2
D

−
ω2
pi

ω2

(

1 + 3
k2v2i
ω2

)

= 0 . (27)

The solution is

ω2 =
k2λ2

D

1 + k2λ2
D

ω2
pi + 3k2v2i =

Te

mi

k2

1 + k2λ2
D

+ 3k2
Ti

mi
. (28)

The phase velocity is

vph =

√

Te

mi

1

1 + k2λ2
D

+ 3
Ti

mi
≪

√

Te

me
= ve . (29)

Thus our assumption ω/k ≪ ve is safely satisfied. Moreover, in order for vph ≫ vi, we generally require

Te ≫ Ti, otherwise, Landau damping on the ion plasma becomes significant (to be discussed shortly).

This dispersion relation looks very much like a sound wave, with pressure largely provided by thermal

electrons (with Ti ≪ Te), and inertia provided by ions. As wavelength decreases towards the Debye

length, wave frequency levels off and approaches the ion plasma frequency.

A major difference between ion acoustic wave and sound wave is the restoring force. In a sound wave,

the pressure response has its origin from molecular collisions. For an ion acoustic wave, the restoring

force has electrostatic origin and is due to the difference in electron and ion oscillations. Note that for

Langmuir waves, the oscillation of electrons and ions are out of phase, while for ion-acoustic waves, their

oscillations are in phase. Their amplitude ratio is simply given by
√

1 + k2λ2
D (ion is larger). In the limit

kλD ≫ 1 (short wavelength or hot electrons), the oscillation is essentially ion plasma oscillation, with

electrons playing a neutralizing background.
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In the presence of finite ion temperature, the ion acoustic wave can severely suffer from Landau

damping. In the long wavelength limit, since wave speed is much less than the electron thermal velocity,

Landau damping due to electrons is always unimportant. For the ions, we rewrite the dispersion relation

adding the imaginary part

1+
1

k2λ2
D

−
ω2
pi

ω2

(

1+
3k2v2i
ω2

)

− iπ
ω2
pi

k2n0
F ′

0i(ω/k) = 1+
1

k2λ2
D

−
ω2
pi

ω2

(

1+
3k2v2i
ω2

)

+ iπ
ω2
piω

k3v2i

F0i(ω/k)

n0
= 0 .

(30)

Let ω = ωR + iγ and assuming γ ≪ ωR, we obtain the imaginary part

γ

ωR
≈ −

(

π

8

)1/2(
vph
vi

)3

e−v2
ph/2v

2
i . (31)

We wee that Landau damping is very strong if vph is comparable to vi. Thus the ion-acoustic wave can

only propagate over a reasonable distance (more than a few wavelength) when Te is at least a factor of

5− 10 times greater than Ti.

Ion-acoustic instability

We have seen that whether waves in a hot plasma can grow or damp depends on the sign of the

velocity derivative of the distribution function at the resonant velocity. For a Maxwellian distribution,

the result is always damping. However, if the distribution function has a bump sufficiently separated

from the Maxwellian peak, one creates a positive slope, which may lead to its inverse: Landau growth.

A classical example is the ion-acoustic instability in a current-carrying system. A system that carries a

current requires a drift velocity vD between electrons and ions. Thus, the peak of Maxwellian distribution

in the electrons and ions are shifted by vD. If vD exceeds the ion thermal speed vi by a factor of a few,

then at the phase speed of the ion acoustic wave, the electron distribution function would have a positive

slope, which could potentially lead to Landau growth.

Let us work out the dispersion relation. Working in the ion-rest frame, then for all terms from the

electron plasma in the dispersion relation, we replace ω by ω−kvD. To simplify, we assume that vD ≪ ve

so that contribution of the electrons to the real part of the dispersion relation is largely unchanged, but

now we need to take into account the imaginary part of the contribution. Working in the ion-rest frame,

the dispersion relation reads

1 +
1

k2λ2
D

−
ω2
pi

ω2

(

1 +
3k2v2i
ω2

)

− iπ
ω2
pi

k2n0
F ′

0i(ω/k)− iπ
ω2
pe

k2n0
F ′

0e(ω/k − vD)

=1 +
1

k2λ2
D

−
ω2
pi

ω2

(

1 +
3k2v2i
ω2

)

+ iπ
ω2
piω

k3v2i

F0i(ω/k)

n0
+ iπ

ω2
pe(ω − kvD)

k3v2e

F0e(ω/k − vD)

n0
= 0 .

(32)

To compare the contribution from ion Landau damping and electron current-driven Landau growth, it

suffices to compare the relative strength between the two resonant terms. The overall result is

γ

ωR
≈ −

(

π

8

)1/2(
vph
vi

)3[

e−v2
ph/2v

2
i +

(

me

mi

)1/2(
Ti

Te

)3/2(

1− kvD
ω

)

e−(vph−vD)2/2v2
e

]

. (33)

For our assumption vD ≪ ve, the exponential term in the electron contribution can be neglected. We see
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that when vD exceeds a threshold value

vth = vph

[

1 +

(

mi

me

)1/2(
Te

Ti

)3/2

e−v2
ph/2v

2
i

]

. (34)

Noting that at long-wavelength limit (kλD ≫ 1),

vph
vi

=

√

Te

Ti
+ 3 . (35)

Therefore, the threshold drift velocity is sensitive to the temperature ratio.

Both the ion-acoustic instability and Buneman instability for a cold plasma involve drift motion

between electrons and ions, and both are electrostatic in nature, but there is a fundamental difference.

The Buneman instability derives from the real part of the dispersion relation and does not involve

resonance. In this sense, it is a macroscopic fluid instability, where the entire fluid participates in it. On

the other hand, the ion-acoustic instability is a micro-instability, which is driven by only a small fraction

of particles in resonance with the wave. It is localized in velocity space, and most other particles are not

directly involved so there is no bulk motion of the plasma as in fluid instabilities. However, such micro-

instabilities can significantly affect the properties of a plasma. In particular, waves over a wide range of

scales can be excited. Response of particles to these waves (or even turbulence!) effectively randomizes

their motion, which appears as if they have undergone “collisions” even the plasma is collisionless. The

outcome of such interactions can lead to anomalous or turbulent transport that can be much more effective

than the classical collisional transport.

While we have derived separately the ion-acoustic instability and the Buneman instability in different

limits of the parameter spaces. The behavior of the plasma transitions smoothly from the ion-acoustic

instability to the Buneman instability as one increases vD or decreases ve.

The ion-acoustic instability has been attributed as a source of anomalous resistivity in current sheets

in the context of magnetic reconnection. Because the waves generated by the instability extracts kinetic

energy from the drifting electrons, and have the tendency to reduce their speeds. This effectively acts

as a drag force to the electrons, corresponding to resistivity. Because no collisions are involved in the

process, this is called anomalous resistivity. This topic will be discussed further later in the course.

Types of resonances

In this lecture, the resonance we have encountered is determined by

ω − k · v = 0 . (36)

This is called the Landau resonance, after Landau who first predicted Landau damping due to this

resonance. It is sometimes also called Cherenkov resonance because this resonance leads to the emission

of Cherenkov radiation (particle travels at speed of light in a medium).

A second type of resonance is called the cyclotron resonance, which occurs in a magnetized plasma

when

ω − kzvz = ±ΩL , (37)
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where ΩL is the particle Larmor frequency, and the z axis is along B. For parallel propagation, waves are

either left or right circularly polarized. The resonance occurs only when the sense of particle gyration is

the same as sense of electric vector rotation. Thus, electrons and ions are resonant with waves of different

polarities. This is related to different resonance behaviors in left/right polarized cold plasma waves that

we discussed in the previous lecture (in the special case of vz = 0). The cyclotron resonance phenomenon

is analogous to that of Landau damping, though the mathematics can be much more complex because

we must deal with the full Vlasov-Maxwell equations.

The outcome of resonant interactions is two fold: it changes the amplitude of the wave, and it

rearranges the distribution function in the resonant region. We have so far studied the first effect. The

second is a non-linear process and will be studied in the next lecture.

The plasma dispersion function

Define plasma dispersion function Z(ζ)

Z(ζ) =
1√
π

∫ ∞

−∞

e−t2

t− ζ
dt (38)

which is defined for Im(ζ) > 0, and is analytically continued for Im(ζ) ≤ 0. It has a number of useful

mathematical properties, and most notably, an alternative expression of Z(ζ) is given by

Z(ζ) = ie−ζ2

∫ iζ

−∞

e−t2dt , (39)

which makes it closely related to the error function, and it is within a constant factor to the well-studied

Dawson function and Faddeeva function. There are standard mathematical routines that can quickly

evaluate this function.

This function is often encountered in problems involving wave propagation through warm plasmas

with Maxwellian velocity distribution. In our derivations of the dispersion relation of warm plasmas, we

have effectively used the first few terms in the asymptotic expansion of Z(ζ). More details about the

mathematical properties of this function can be found in the NRL plasma formulary.
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