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Non-linear Effects

In the previous lecture, we discussed thermal effects and resonances on the linear properties of a

plasma, and showed that resonant interaction leads to growth or damping of waves depending on the

slope of the distribution function at resonances. In particular, we have already seen that there are many

ways that a plasma can become unstable. These instabilities arise mainly because there are some forms

of free energy available in the system, mainly residing in the distribution of particles. Growth of these

instabilities are fed by such free energies, and of course should act to reduce them, which would eventually

quench the instabilities. This means that particle distribution in phase space must be modified, but it is

not captured in the linear analysis. To better understand the non-linear outcome of these instabilities,

and assess to what extent are linear theories are valid, it is essential to move one step further to develop

a theory applicable to the weakly non-linear regime.

Spectrum of waves

In all our previous study of waves, it suffices to decompose physical quantities into monochromatic

modes, and then focus on a single mode with a fixed k. Non-linear theory inevitably involves coupling

between different wave modes, so we must do the decomposition with more care. The foundation of this

wave decomposition is a spatial Fourier transform inside a “box” of length L

E(k, t) =

∫ L/2

−L/2

E(x, t)e−ikxdx , E(x, t) =
1

L

∑

k

eikxE(k, t) , (1)

where k = 2πn/L, n = 0,±1,±2, .... Taking the limit L → ∞ would convert the above pair of equations

into the familiar Fourier integrals:

E(k, t) = lim
L→∞

∫ L/2

−L/2

E(x, t)e−ikxdx , E(x, t) =

∫ ∞

−∞

E(k, t)eikx
dk

2π
. (2)

Let us consider the “intensity” of the wave electric field by performing an average over length (or

volume in 3D) of the system

1

L

∫ L/2

−L/2

dxE(x)2 =
1

L3

∫ L/2

−L/2

dx
∑

k,k′

ei(k
′−k)xE∗(k)E(k′) =

1

L2

∑

k

E∗(k)E(k)

=

∫ ∞

−∞

dk

2π

E∗(k)E(k)

L
≡

∫ ∞

−∞

I(k)dk .

(3)

where we have essentially used Parseval’s theorem. Here, I(k) ≡ E∗(k)E(k)/2πL describes the intensity

of the wave, and the wave spectral energy density is simply given by I(k)/4π (split by half into field and

particle energies). Note that the factor L is explicit in the definition to avoid divergence.
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The key focus in weakly non-linear wave theory is to study the evolution of I(k). This is described

by the wave-kinetic equation, which is a very complex equation that essentially includes all the non-

linear mode couplings and wave-particle interactions. Instead of presenting it, we here focus on the main

ingredients of non-linear wave theory.

Wave-particle interaction: quasi-linear theory

Wave-particle interaction describes the long-term response of particle distribution function to waves.

The standard theory for this is called quasi-linear theory (why we call it “quasi-linear” will become clear

as we go through the derivations), which describes the diffusive evolution of the particle distribution

function in velocity space.

Consider the simplest case of electrostatic waves in an unmagnetized plasma in 1D, and treat ions as

neutralizing background. We separate the distribution function f , can be separated into a slowly-varying

part, f0, and a rapidly fluctuating part f1 due to waves, where f1 ≪ f0. For simplicity, we assume f0 is

spatially uniform.

f(x, v, t) = f0(v, t) + f1(x, v, t) . (4)

The Vlasov equation reads

∂f0
∂t

+
∂f1
∂t

+ v
∂f1
∂x

− e

m
E
∂f0
∂v

− e

m
E
∂f1
∂v

= 0 . (5)

Averaging this equation over rapid fluctuations, we have

∂f0
∂t

=
e

m

〈

E
∂f1
∂v

〉

, (6)

where 〈·〉 denotes such time-averages. All other terms linear in f1 or E average to zero. Note that the

right hand side is a non-linear term and reflects the role of wave-particle interaction. Subtracting this

part from the full Vlasov equation, we find the rapidly fluctuating part of the equation

∂f1
∂t

+ v
∂f1
∂x

− e

m
E
∂f0
∂v

=
e

m

(

E
∂f1
∂v

−
〈

E
∂f1
∂v

〉)

. (7)

As long as f1 is much smaller compared with f0, we can argue that the non-linear term on the right hand

side is small compared with other linear terms and hence can be neglected. In this sense, the theory is

quasi-linear: (6) is non-linear, while (7) is linear, which we replace by

∂f1
∂t

+ v
∂f1
∂x

− e

m
E
∂f0
∂v

= 0 . (8)

This is very similar to the linearized Vlasov equations we used before but not quite the same, because

f0 is time-dependent. However, since the rate of change in f0 is much slower compared with f1, we may

treat f0 as constant in solving this equation.

Quasi-linear theory demands that first, higher-order processes should not be important, which is the

case if the field amplitudes remain modest, and second, a sufficient number of modes are present so that

phase-mixing is able to destroy, on the timescale of plasma-state evolution, any effects due to mode-mode

coherence.
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This equation for electrons may be coupled with the equation for other species, together with the

Poisson equation, to yield a dispersion relation (following the procedures discussed in the previous lec-

tures)

ω = ω(k) = ωR(k) + iγ(k) . (9)

Using this dispersion relation, we obtain

f1(k, t) =
ie

m

E(k, t)

ω(k)− kv
· ∂f0
∂v

, (10)

which is to be substituted to (6) via a Fourier transformation.

To proceed, we invoke the so-called “random phase approximation”. It states that for wave quantities

in Fourier space A(k, t) and B(k, t), they satisfy 〈A∗(k)B(k′)〉 = A∗(k)B(k′)δ(k, k′). The quasi-linear

term becomes

e

m

〈

E
∂f1
∂v

〉

=
e

m

1

L2

∑

k,k′

ei(k−k′)x

〈

E∗(k′)
∂

∂v
f1(k)

〉

=
e

m

1

L2

∑

k

E∗(k)
∂

∂v
f1(k) =

e

m

1

L

∫ ∞

−∞

dk

2π
E∗(k)

∂

∂v
f1(k) .

(11)

Substituting (10) into the above, we find

e

m

〈

E
∂f1
∂v

〉

= i
e2

m2

1

L

∫ ∞

−∞

dk

2π

∂

∂v

[

E∗(k, t)E(k, t)

ω(k)− kv

∂f0
∂v

]

=
∂

∂v

(

D(v)
∂f0
∂v

)

, (12)

where

D(v) ≡ i
e2

m2

1

L

∫ ∞

−∞

dk

2π

E∗(k, t)E(k, t)

ω(k)− kv
= i

e2

m2

∫ ∞

−∞

dk
I(k)

ω(k)− kv
(13)

is the diffusion coefficient in velocity space.

When γ(k) ≪ ωR(k), helpful insight can be gained by using the Plemelj relation1

1

ω − kv
= P

(

1

ωR − kv

)

− iπδ(ωR − kv) . (14)

Again, the principle value part describes contribution from non-resonant particles. Their oscillatory

trajectories should not contribute to the changes in distribution function f0 (but they retain memory

of the waves, and contribute to energy and momentum conservation associated with the waves). The

imaginary part describes contribution from resonant particles, which encapsulates the effect of particle

redistribution following resonant interactions. Since the difference between ω and ωR is small, we obtain

D(v) = π
e2

m2

∫ ∞

−∞

dkI(k)δ(ω(k)− kv) . (15)

We see for particles at a given v, only waves that are resonant with these particles contribute to their

velocity space diffusion.

1It again originates from causality considerations. A rule-of-thumb to obtain this relation is to replace ω by ω + iν in

the limit ν → 0+.
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Accompanying this equation of quasi-linear diffusion is the equation that determines the wave ampli-

tude, which results from the solution to the linear dispersion relation. In terms of wave intensity (square

of amplitude), we have
∂

∂t
I(k) = 2γ(k)I(k) . (16)

Note that in this equation, there can be additional terms due to other non-linear effects which are not

included.

Efficiency of quasi-linear diffusion

How efficient is quasi-linear diffusion? We can proceed further by performing the integral over k by

noting that

δ(ω(k)− kv) =
δ(k − kc)

|∂ω/∂k − vph|
=

δ(k − kc)

|vg − vph|
, (17)

where kc is the wavenumber such that ω(k) = kv, and vph is the phase velocity at the resonance. Thus

D(v) = π
e2

m2

I(k)

|vg − vph|

∣

∣

∣

∣

ω(k)=kv

. (18)

For Langmuir waves, we have vph ≈ ωp/k, and vg ≈ 3(kλD)ve ≪ vph (for kλD ≪ 1). If we consider a

spectrum of waves around wavenumber k, the wave energy density is of the order E ≈ kI(k)/4π (this is

to assume that a wave packet has a size of ∼ 1/k). If we assume this is a fraction δ of the thermal energy

density nkBT , we have

D(v) ≈ π
4πe2

m2

δ · nkBT
ωpe

≈ πδv2eωpe . (19)

We can see that diffusion timescale, the timescale over which particle velocity develops substantial spread

(in this case ∆v ∼ ve) is on the order of δ−1 times the plasma oscillation period. Thus, quasi-linear

diffusion can be very efficient if wave amplitude is modestly large.

Generalization to three dimensions

In the case of electrostatic modes in unmagnetized plasmas, the dispersion relation is isotropic ω(k) =

ω(|k|). Generalization of the discussions above is straightforward. Wave intensity is now defined as

1

V

∫

dV E(x)2 =

∫

d3k

(2π)3
E∗(k)E(k)

V
≡

∫

I(k)d3k . (20)

The diffusion coefficient becomes a tensor

D(v) = π
e2

m2

∫

d3kI(k)k̂k̂δ[ω(k)− k · v] , (21)

and the corresponding diffusion equation is

∂f(v)

∂t
=

(

∂

∂vi
Dij

∂

∂vj

)

f . (22)

Notes on random phase approximation

It is well known that if the mean square of the Fourier transform is a smooth function of k, then the

inverse transform is a series of wave packets. We expect these wave packets to fill the volume and each
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packet should have a random phase and position with respect to one another. Physically, we expect the

wave packets to arise by exponential growth from a thermal distribution that satisfy these properties.

This “random phase approximation” is a basic assumption in the quasi-linear theory of wave-particle

interaction.

For simplicity, we treat the waves as one-dimensional. We consider N identical wave packets located

in between −L/2 and L/2. Each packet is centered at x = xn, and the electric field is given by

En = f(x− xn, t) . (23)

The total electric field is given by E(x) =
∑

n En(x). Its Fourier transform is

En(k) =

∫ L/2

−L/2

f(x− xn)e
−ikxdx = e−ikxnf(k) , (24)

where f(k) is the Fourier transform of f(x). Because of the random phase,
∑

n En(k) should average to

zero. For wave intensity, we have

E∗(k′)E(k) =
∑

m,n

E∗
m(k′)En(k) =

∑

m,n

ei(k
′xm−kxn)f∗(k′)f(k) . (25)

We then perform an ensemble average on the phases (xn)

〈E∗(k′)E(k)〉 =
〈

∑

m,n

ei(k
′xm−kxn)

〉

f∗(k′)f(k)

=
1

L

∑

n

∫ L/2

−L/2

dxne
i(k′−k)xnf∗(k′)f(k)

=
∑

n

|f(k)|2δ(k′, k) = |E(k)|2δ(k′, k) = 2π

L
|E(k)|2δ(k′ − k) .

(26)

Wave-wave interaction

Wave-wave interaction is essentially a fluid phenomenon and is best described in the fluid framework.

To illustrate this, we may start from the continuity equation

∂ρ1
∂t

+∇ · [(ρ0 + ρ1)v1] = 0 , (27)

where ρ1 represents density perturbations. To first order, suppose we have two waves a and b given by

ρ1a = ρ̄1ae
i(kax−ωat) , ρ1b = ρ̄1be

i(kbx−ωbt) . (28)

Now to the next order, we include the non-linear term ∇ · (ρ1v1). Note that for a single wave a or b,

including the non-linear term leads to wave steepening and shocks that we discussed earlier in this course.

The presence of two waves produces a cross term between them, which is what we are most interested.

This cross term has the form

∇ · (ρ1v1) = i(ka + kb)(ρ1bv1a + ρ1av1b) , (29)

5



which varies as exp [i(ka + kb)x− i(ωa + ωb)t]. Clearly, if the wavenumber kab ≡ ka+kb, and the frequency

ωab ≡ ωa+ωb, satisfy a dispersion relation for a third wave, then this non-linear term provides a possibility

for the three waves to couple with each other.

More generally, three waves a, b, and c can be non-linearly coupled if their wave numbers and fre-

quencies satisfy

kc = ka + kb , ωc = ωa + ωb . (30)

This is known as a resonant triad. Of course, we can keep going to higher orders which would yield

coupling among four, five, ..., waves, but as long as wave amplitudes are modest, these higher order

couplings are much less significant than the resonant triad.

Wave-wave interactions come in two flavors. In the first case, two waves add up to produce the third

wave. In the second case, one wave gives energy to two other waves through mutual interactions. The

latter is also called mode decay.

Here we provide a simple example of wave-wave interaction that leads to mode decay. Consider a

homogeneous medium with mean density ρ0 and background field B = B0ẑ. For simplicity, treat the

fluid as being isothermal with sound speed cs. The Alfvén speed is thus vA = B0/
√
4πρ0. Let us assume

the plasma is strongly magnetized with cs < vA.

Consider a modestly large amplitude Alfvén wave a propagating along the background field (ẑ), and

is polarized in the x̂ direction. Take its wave number ka to be positive, and its frequency is ωa = kavA.

In addition, we assume there is a small amplitude Alfvén wave b, and a small amplitude sound speed c.

Both propagate along ẑ, with wave numbers kb, kc (either positive or negative) and frequencies ωb, ωc

(always positive). Assume the Alfvén wave b is also polarized in x̂. It can be found that the selection

rule can be satisfied in the case with kb < 0 and kc > 0:

ka = −|kb|+ kc , kavA = |kb|vA + kccs , (31)

which requires
ka
|kb|

=
vA + cs
vA − cs

. (32)

Note that we have assumed vA > cs at the beginning. The outcome of this coupling is that a modestly

strong Alfvén wave can decay by interacting with a counter-propagating Alfvén wave of longer wavelength

and giving energy into this wave together with a forward-propagating sound wave with smaller wavelength.

Details of the calculation can be found in Kulsrud’s book. The decay rate scales as the square of the

amplitude of the a wave times ωa.

Non-linear Landau damping

There is another important non-linear process that involves coherent scattering of energy between

two waves. In this process, two waves A and B interact with each other to produce a beat wave, and

this beat wave resonantly interacts with particles traveling at the speed (ωA − ωB)/(kA − kB). The

outcome is that both the lower-frequency wave and the resonant particles gain energy at the expense of

the higher-frequency wave. This process is called non-linear Landau damping.
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As an example, consider two circularly polarized Alfvén waves propagating along the background

magnetic field B0 in the ẑ direction, with wave numbers kA,B and frequencies ωA,B. The perturbed fields

become

δBx = bA cosφA + bB cosφB , δBy = bA sinφA + bB sinφB , (33)

where, as before, φA,B = kA,Bx− ωA,Bt. Then the perpendicular field

(δb⊥)
2 = b2A + b2B + 2bAbB cos(φA − φB) (34)

and the field strength to second order is

B =
√

B2
0 + δb2⊥ ≈ B0 +

δb2⊥
2B0

= const +
bAbB
B0

cos(φA − φB) . (35)

Recall that variation of field strength along the field leads to the magnetic mirror force acting on an

ion particle is

d

dt
(mv‖) = −µ

∂

∂z
B =

mv2⊥
2

(kA − kB)
bAbB
B2

0

sin(φA − φB) ≡ G sin(φA − φB) . (36)

This mirror force is exactly analogous to an oscillating electric field, with G = eEeff . The ion particle

will be in resonance with this beat wave when

vz =
ωA − ωB

kA − kB
= vA . (37)

Here vA is the Alfvén speed not to be confused with the A wave.

In our homework problem, you will be able to show that for particles traveling along an oscillatory

electric field, the phase-averaged rate of energy change is given by

Ė = −
∫

π

2

ωe2E2
eff

mk2
∂f

∂vz

∣

∣

∣

∣

vz=vA

d2v⊥ = −
∫

π

2

vAG
2

m(kA − kB)

∂f

∂vz

∣

∣

∣

∣

vz=vA

d2v⊥

= −
∫

d2v⊥
π

8
mvAv

4
⊥

(

bAbB
B2

0

)2

(kA − kB)
∂f

∂vz

∣

∣

∣

∣

vz=vA

.

(38)

Clearly, ions gain energy if ∂f/∂vz at vz = vA is negative, which essentially always holds.

Where is the energy extracted from? Here we just state without proof that what happens is that,

in quantum mechanics language, the higher frequency wave with frequency ωA gives off an energy ~ωA,

where some of it, ~ωB, ending up in wave B, and the difference going to the resonant particles. In other

words,

− ĖA
ωA

=
ĖB
ωB

. (39)

where ĖA,B is the energy gain rate for the A,B waves. We thus have

−ĖA = Ė + ĖB , (40)

or

Ė = −ĖA − ĖB = −ĖA
(

1− kB
kA

)

= −ĖA
(

1− kB
kA

)

. (41)
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Therefore, the damping rate for the A wave is

−ĖA =
kA

kA − kB
Ė = −

∫

d2v⊥
π

8
mkAvAv

4
⊥

(

bAbB
B2

0

)2
∂f

∂vz

∣

∣

∣

∣

vz=vA

(42)

If we assume vA ≪ cs, then we have

∂f

∂vz
≈ −vA

v2i
f(0, v⊥) = − n0

(2πv2i )
3/2

vA
v2i

e−v2

⊥
/2v2

i , (43)

where vi =
√

kT/mi is the ion thermal speed. Which lead to

−ĖA = −
√

π

2
ωA

vA
vi

n0mv2i

(

bAbB
B2

0

)2

= −2γNLEA . (44)

Noting that EA = b2A/4π (equal amount of energy in the fields and in particle motion), we further obtain

γNL ≈ 1

2

√

π

2

vi
vA

(

bB
B0

)2

ωA . (45)

Non-linear Landau damping is an important saturation mechanism for unstable waves. Let γ be

the linear growth rate for wave A. In general, when wave A is unstable, a family of waves with similar

wave numbers are also unstable and share similar wave amplitudes as wave A. Therefore, for order of

magnitude, we may simply replace bB by bA and write the damping rate as

γNL ≈ 1

2

√

π

2

vi
vA

(

bA
B0

)2

ωA ≡ αEA . (46)

The saturation amplitude is thus given by

EA ∼ 2γ

α
. (47)

We note that if the linear growth rate is very small, the wave can saturate at fairly low amplitude.

We finally comment that non-linear Landau damping operates only in collisionless plasmas, while

damping (mode decay) by wave-wave interaction does not require this.

Particle trapping

Another non-linear mechanism for the saturation of a growing collisionless mode is particle trapping.

We again take the electrostatic plasma oscillation as an example. In the wave frame, suppose the elec-

trostatic potential varies as φ = φ0e
ikx, then in this frame, particles whose energy is less than eφ0 would

get trapped and bounce back and forth in this electrostatic potential. This bounce motion is not cap-

tured in linear analysis, where particles are assumed to follow zeroth-order trajectories (straight lines).

Because trapped particles do not exchange energy with the wave (note that in the non-linear regime,

they are the resonant and are responsible for wave damping/growth), therefore, linear results of Landau

damping/growth no longer hold. In the case of instabilities, particle trapping essentially leads to wave

saturation.

Now let us discuss the condition for particle trapping. The equation of motion for trapped particles

is
d2x

dt2
≈ − q

m
kφ0 sin kx ≈ − q

m
kE0x . (48)
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Thus, trapped particles bounce over a period of

τb ∼ 2π

√

m

qkE0
. (49)

Linear analysis fails when this period is smaller than the damping/growth time scale.
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