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Collisions and Transport

Coulomb Collision Rates

Consider a test particle – let it be an electron – interacting with background field particles – let them

be protons for the moment. The test particle travels at speed ve, and we treat protons as being at rest

(because their velocities are typically much smaller). When the electron passes by a single proton, its

trajectory is characterized by the impact parameter b, which is the distance of closest approach if it were

not to be deflected. The electron will be scattered by the Coulomb field of the proton, a process sometimes

called Rutherford scattering. If the deflection angle is small θD ≪ 1 (which is generally the case, as we

shall see), then we can calculate its value using the impulse approximation: integrate the perpendicular

impulse by the proton’s Coulomb field exerted to the electron along its unperturbed trajectory. The

deflection angle is determined by

meveθD = medvy =

∫ ∞

−∞

Fy(t)dt =

∫ ∞

−∞

e2

b2 + v2e t
2

b
√

b2 + v2e t
2
dt =

2e2

bve
, (1)

thus

θD =
bo
b

for b≫ bo , (2)

where

bo ≡ 2e2

mv2e
. (3)

Note that this bo is the same as rc defined in the first handout for a thermal electron, and characterizes the

scale below which Coulomb potential energy dominates particle kinetic energy. We can also see here that

when b . bo, the impulse approximation breaks down and the electron would be significantly deflected

(by more than one radian).

Now we discuss the timescale for an individual electron to be deflectd by Coulomb scattering with

protons. We consider the particle to have undergone a “collision” if its trajectory is deflected by of order

one radian, at which point the particle’s direction of motion is effectively randomized. This “collision”

can be achieved either by a single scattering event, which requires the impact parameter b . bo, or the

cumulative effect of many small-angle scatterings. In the former case, the collision frequency νD (inverse

of collision time tD) is

νD ≡ 1

tD
= nσve = nπb2ove , (4)

where n is the proton number density.

In fact, the effect of cumulative small-angle scattering in a plasma is much more significant. Because

the directions of individual scatterings are random, the deflection angle undergoes a random-walk. Hence,
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Figure 1: The geometry of a Coulomb interaction.

the mean deflection angle vanishes but its mean square, 〈Θ2〉 ≡ ∑

all encounters θ
2
D, does not. We can

evaluate this by

〈Θ2〉 =
∫ bmax

bmin

(

bo
b

)2

nvet · 2πbdb = 2πnb2ovet ln

(

bmax

bmin

)

. (5)

Here, the factor (bo/b)
2 is the squared deflection angle, and the remaining factor nvet2πbdb is the number

of encounters that occur with impact parameters between b and b+ db during time t.

The integral diverges logarithmically at both lower limit bmin and upper limit bmax. We will discuss

the origins of and values of the cutoffs bmin and bmax below. The value of t for 〈Θ2〉 to reach unity defines

the deflection time tD

νD =
1

tD
= 2πnb2ove ln Λ =

8πne4

m2v3e
ln Λ , (6)

where Λ ≡ bmax/bmin. The factor lnΛ is called Coulomb logarithm. We see that this deflection frequency

is larger, by a factor 2 lnΛ than the frequency for a single large-angle scattering.

The lower limit bmin should be taken as bo below which the impact approximation breaks down [and

we already take care of this regime in (4)]1. The upper limit bmax should be taken as the Debye length

λD, because the Coulomb force is largely shielded beyond λD. In the first lecture, we introduced the

plasma parameter Λ. From (12) in the first handout, we see that the plasma parameter is essentially

the same as Λ in the definition of Coulomb logarithm (hence the same symbol is used), if the electron

velocity ve we just considered is taken to be thermal. As we already learned that Λ is huge for typical

astrophysical plasmas (& 105), and the logarithmic form of this factor means that it does not depend on

Λ very strongly. For Λ in the range of 105−13, ln Λ varies between about 10− 30. For general purposes,

it suffices to take lnΛ ∼ 20. Clearly, interaction with many distant particles within the Debye sphere

largely dominates close encounters.

The discussion above applies to electrons being scattered by ions. We can also consider the deflection

of electrons by other electrons. Although we can no longer assume other electrons being at rest, the two-

body interaction is equivalently described by a charged particle with reduced mass µ = me/2 interacting

with another charged particle at rest (plus other corrections such as relative velocity, etc.), and overall

the corrections are of order unity. Therefore, the deflection frequency for electrons are simply given by

νeeD ∼ νepD ∼ 8πne4

m2
ev

3
e

ln Λ . (7)

1Note that when bo is smaller than the de Broglie wavelength of the electron, we need to replace bo by ~/meve. This

occurs when electron velocity ve & 4.4× 108 cm s−1. The same applies to protons.
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In the same spirit, we can compute the collision frequency/time for protons. Because protons are much

more massive than the electrons, deflection is dominated by proton-proton collisions. The deflection

frequency is given by

νppD ∼ 8πne4

m2
pv

3
p

ln Λ . (8)

Clearly, if electrons and protons share the same temperature T , then proton-proton collision rate is a

factor
√

me/mp slower.

Thermal Equilibration Rates

Collisions of electrons with one another randomize their velocities at the rate of νeeD . This can also

be considered as the rate to establish a Maxwellian distribution. Similarly, collisions of protons with one

another drives them to achieve their own Maxwellian distribution at the rate of νppD , which is a factor of
√

me/mp slower. If electrons and protons have different temperatures, interactions between electrons and

ions will lead to exchange energy between the two species, and drive them towards a common temperature.

We again start from binary interactions. To analyze the energy exchange ∆E, it is most convenient

to work in the proton frame. By momentum conservation, we have

∆E = − δp2

2mp
= −me

mp

(

bo
b

)2

E for b≫ bo . (9)

Here E = mev
2
e/2 is the electron’s initial energy. Compare this with the deflection rate (in θ2D) studied

before, we see that ∆E/E is a factor me/mp smaller. Correspondingly, the timescale for electron energy

loss is

νloss ∼
me

mp
νepD . (10)

Clearly, this is another factor of
√

me/mp slower than νep, and is the slowest process among all. We

also note that in arriving at (9), we assume that ions stand as static background, and hence electrons

always lose energy to protons. When ions have finite temperature, electrons can either gain or lose energy

from the ions during a Coulomb interaction, and (10) represents an order-of-magnitude estimate for the

timescale for electrons and ions to equilibrate.

Collision Times from the Fokker-Planck Equation

The collision rates above are obtained in a qualitative way. More accurate result can be derived

from the Fokker-Planck equation that will be discussed in more detail. For Maxwellian distributions at

temperature T , we list τAB (= 1/νAB
D ), the effective collision time of particle species A by interaction

with particle species B, where A,B can be e or p:

τep =
3

4
√
2π ln Λ

(kT )3/2m
1/2
e

e4n
≈ 2.8× 104

(

10

lnΛ

)(

T

104 K

)3/2(
n

cm−3

)−1

s , (11)

τee =
3

4
√
π ln Λ

(kT )3/2m
1/2
e

e4n
≈ 3.9× 104

(

10

lnΛ

)(

T

104 K

)3/2(
n

cm−3

)−1

s . (12)

τpp =
3

4
√
π ln Λ

(kT )3/2m
1/2
p

e4n
≈ 1.7× 106

(

10

lnΛ

)(

T

104 K

)3/2(
n

cm−3

)−1

s . (13)
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τpe =
3

4
√
2π ln Λ

(kT )3/2mp

e4nm
1/2
e

≈ 5.0× 107
(

10

lnΛ

)(

T

104 K

)3/2(
n

cm−3

)−1

s . (14)

They can be considered as the timescale for the particles to establish a Maxwellian distribution. As

already discussed, the relative ordering is given by

τee ∼ τep ∼ (me/mp)
1/2τpp ∼ (me/mp)τpe . (15)

Electrons are the most easily scattered, ion scattering rate is a factor (me/mp)
1/2 smaller, while scattering

of the ions by the electrons is the most inefficient.

Recall that the Coulomb logarithm is essentially the same as the plasma parameter

Λ ≈ (kT )3/2

(4πn)1/2e3
. (16)

It is intuitive to find that

νee ≡
1

τee
∼ ln Λ

Λ
ωpe , νpp ≡ 1

τpp
∼ ln Λ

Λ
ωpi . (17)

Knowing the collision frequency, it is straightforward to compute the particle mean free path λmfp ∼
vT τ , where v

2
T = 3kT/m is the particle thermal velocity. The result is

λe ∼ veτee ∼ 3
√
3

4
√
π ln Λ

(kT )2

e4n
∼ λp ≈ 2.6× 1012

(

10

lnΛ

)(

n

cm−3

)−1(
T

104K

)2

cm . (18)

Note that the ion and electron mean free paths are about the same if their temperatures are about equal.

Fokker-Planck equation

Following the overview of binary collision processes, we now return to the Boltzmann equation, with

the addition of collisions

∂fs
∂t

+ v · ∇fs +
[

qs
ms

(

E +
v

c
×B

)]

· ∂fs
∂v

=

(

∂fs
∂t

)

c

, (19)

where the last term denotes “collisions” due to interparticle interactions, and the subscript denotes

individual species s (= i, e).

As we have seen, collisions in plasmas are largely due to the cumulative effect of many relatively weak

interactions rather than few close encounters. In other words, these interactions only slightly alter particle

trajectories in phase space, rather than giving discontinuous kicks. The Fokker-Planck equation describes

the evolution of the distribution function under the influence of such weak and random interactions.

We define a function ψ(v,∆v,∆t), so that

ψ(v,∆v,∆t)d3v (20)

is the probability that a particle with velocity v be scattered to velocity v +∆v within d3v after a time

interval ∆t. Clearly, it must satisfy
∫

ψ(v,∆v,∆t)d3∆v = 1 . (21)
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With this definition, the evolution of the distribution function due to collisions after time ∆t is given by

f(v, t+∆t) =

∫

f(v −∆v, t)ψ(v −∆v,∆v,∆t)d3∆v . (22)

Because individual collisions are weak, most contribution in the integral above must come from small

∆v, allowing us to expand the equation around v. Up to the second order, we have

f(v, t+∆t) = f(v, t)−
∫

∆v · ∂
∂v

(fψ)d3∆v +
1

2

∫

∆v ·
[

∆v · ∂
∂v

∂

∂v
(fψ)

]

d3∆v . (23)

We can move the partial derivative on v out and perform the integral on ∆v, defining the following

〈∆̇v〉 ≡ 1

∆t

∫

∆vψ(v,∆v,∆t)d3∆v , (24)

〈 ˙∆v∆v〉 ≡ 1

∆t

∫

∆v∆vψ(v,∆v,∆t)d3∆v . (25)

Note that both 〈∆̇v〉 and 〈 ˙∆v∆v〉 are functions of v, and describes the rate of change in ∆v and ∆v∆v

due to collisions. Then, we arrive at the Fokker-Planck equation
(

∂f

∂t

)

c

= − ∂

∂v
· (f〈∆̇v〉) + 1

2

∂

∂v
·
[

∂

∂v
· f〈 ˙∆v∆v〉

]

. (26)

Physical interpretation of the two terms on the right hand side is straightforward. The first term is the

average rate of change of the particles’ mean velocity due to collisions, and it is called dynamical friction

and is analogous to the same phenomenon in the context of collisionless N-body dynamics. The second

term is called velocity diffusion coefficient, which describes the spreading of particle velocity distribution.

The Landau Collision Integral

For plasmas with multiple species, the collision term for species A can be expressed as a summation

of collision terms of A with all species (including itself), represented by Bs. For notational convenience,

the collision term is often written as
(

∂fA
∂t

)

c

=
∑

B

CAB(fA, fB) , (27)

where CAB is the collision operator describing the rate of change in fA due to interactions with particles

of species B with distribution function fB.

With a more careful derivation of Coulomb collisions and some algebra, the Fokker-Planck equation

can be cast into a very physically intuitive form, given by
(

∂fA
∂t

)

c

=
1

mA

∂

∂vA
·
[

∑

B

2πq2Aq
2
B ln Λ

∫

fA(vA)fB(vB)
I− ûû

u
· χABd

3vB

]

, (28)

where u ≡ vA − vB with û being the unit vector along u, and

χAB ≡ 1

mA

∂ ln fA(vA)

∂vA
− 1

mB

∂ ln fB(vB)

∂vB
. (29)

This is known as the Landau collision integral, and the corresponding CAB is called the Landau collision

operator.
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As long as collisions are elastic, the collision operator must satisfy conservation of particle number,

momentum and energy. These can be easily demonstrated using the Fokker-Planck equation in Landau

form, given its highly symmetric nature. In addition, it can be shown that the collision integral satisfies

the Boltzmann H-theorem

dH

dt
≤ 0 , where H ≡

∑

A

∫

fA ln fAd
3vA . (30)

The quantity H is closely related to the entropy S of the system, with S = −H+C where C is a constant,

and the Boltzmann H-theorem reinforces the second law of thermodynamics.

It can further be shown that the condition for dH/dt = 0 is that all particles species follow a Maxwell

distribution with a common temperature (e.g., Hinton, 1983). Therefore, Coulomb collisions drive the

distribution functions of all particle species towards Maxwellian distribution.

Because of this property, it is often convenient to consider the simplest Bhatnagar-Gross-Krook (BGK)

collision operator. For species s, it is given by

(

∂fs
∂t

)

c

= −νs(fs − FM,s) , (31)

where FM,s is the distribution function at equilibrium (Maxwellian), and νs is the collision frequency.

Although it misses certain aspects of physics, its simplicity greatly facilitates analysis in many physical

situations.

Transport Coefficients

Collisions are fundamental in understanding the plasma transport processes, including thermal con-

duction, viscosity, and resistivity. The transport coefficients can be derived rigorously from the Fokker-

Planck equation, but they can be obtained to within order of magnitude from simple analysis, as we

proceed below.

Transport coefficients in the absence of magnetic fields

For any species s (which we drop the subscript label) with number density n at temperature T (with

thermal velocity vT ∼
√

kT/m) , let ν be the collision time and collision frequency as derived above, and

τ ≡ 1/ν be the collision time. The general scaling is that τ ∝ m1/2T 3/2/n.

Resistivity results from the collisional drag between the electrons and ions. Its inverse, electric con-

ductivity σ, is defined by the Ohm’s law

J = σE , (32)

where for the moment, we only consider the component parallel to the magnetic field. Imposing an

external electric field E, a current develops as electrons and ions are accelerates to opposite directions,

leading to a mean drift velocity vd between the two species, with vd ∼ J/en. For sufficiently small drift

velocity vd ≪ vT , the collisional drag force Fd is proportional to vd, with stopping time ∼ collision time

τ :

Fd ∼ mvd
τ

=
mJ

enτ
. (33)
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Balancing the parallel acceleration by the electric field and collisional drag force, electric conductivity is

given by

σ ∼ ne2τ

m
∝ T 3/2

m1/2
. (34)

The Fokker-Planck result is a factor of ∼ 2 larger. We see that parallel electric conductivity becomes

progressively larger towards higher temperature, and again, contribution from the most mobile electrons

dominates that from the ions by a factor of ∼
√

mi/me.

A heat flux q is generated in presence of a temperature gradient, which defines the thermal conduc-

tivity κ

q = −κ∇T . (35)

Microscopically, heat transport takes place over the distance of particle mean free path λmfp ∼ vT τ , where

vT is the thermal velocity, τ is the collision time. Particles can exchange energy with their neighbors by

collisions at a distance of ∼ λmfp. The amount of energy exchange over one mutual collision, averaged

over all particles, is ∆E ∼ k∇Tλmfp. The heat flux is thus given by q ∼ n∆EvT ∼ nk∇TλmfpvT . The

thermal conductivity is thus given by

κ ∼ (nk)λmfpvT ∼ nτkT

m
∝ T 5/2

m1/2
. (36)

The Fokker-Planck result is a factor of ∼ 3 larger. We see that thermal conduction becomes progressively

more important towards more weakly collisional systems and sensitively depends on temperature. It is

also clear that electrons dominate heat conduction over the ions by a factor of ∼
√

mi/me.

Viscosity can be considered as a similar phenomenon as thermal conduction: particles exchange of

momentum (instead of energy) over the distance of the mean free path. The momentum flux, now is a

tensor (called viscous stress tensor), is proportional to the velocity gradient. The formal expression of

the viscous stress tensor is given by

πij = η

(

∂Vi
∂xj

+
∂Vj
∂xi

− 2

3
δij∇ · V

)

. (37)

The dynamical viscosity η can be estimated in the same spirit as for thermal conductivity. The amount

of momentum exchange over one collision is about ∆p ∼ mλmfp(dV/dl), leading to a momentum flux of

π ∼ n∆pvT ∼ nmλmfp(dV/dl)vT .

η ∼ (nm)λmfpvT ∼ nτkT ∼ m1/2T 5/2 . (38)

Because the momentum of the plasma is mostly carried by the ions, viscous stress is dominated by the

ions by a factor of
√

mi/me over the electrons.

Transport coefficients in the presence of magnetic fields

The relative importance of magnetic fields is measured by the ratio of Larmor radius rL and particle

mean free path λmfp. When rL . λmfp, particle motion perpendicular to the magnetic field is restricted.

The effective mean free path perpendicular to the magnetic field essentially becomes λmfp,⊥ ∼ rL, and

the particle flux in the perpendicular direction is rL/τ (instead of vT ).
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We can then follow the same analysis above to obtain for the perpendicular thermal conductivity

κ⊥ ∼ (nk)rL

(

rL
τ

)

∼
(

rL
λmfp

)2

κ‖ =
κ‖

(ΩLτ)2
, (39)

where ΩL is the Larmor frequency. When ΩL ≫ ν, we see that perpendicular heat flux is strongly

suppressed by a factor of (ν/ΩL)
2, and hence thermal conduction proceeds primarily along the magnetic

field.

Similarly, viscosity can be divided into parallel and perpendicular viscosity, though the corresponding

stress tensor is much more complex, which we postpone to the next lecture. The same scaling holds

between parallel and perpendicular viscosity, with η⊥ ∼ η‖/(ΩLτ)
2.

In addition to the diffusive particle flux that leads to the diffusive transport of heat and momentum,

there is also a transport process associated with the gyro-magnetic particle flux. The origin of gyro-

magnetic flux is analogous to the magnetization current discussed in particle orbit theory. This effect

gives a heat flux

q× ∼ nvT (rLb×∇kT ) , (40)

which is perpendicular to both the direction of the magnetic field and temperature gradient. The corre-

sponding coefficient, the cross thermal conductivity κ×, is

κ× ∼ nvTkrL ∼ nkT

mΩL
. (41)

The more accurate Fokker-Planck result is a factor 5/2 larger. Note that this this conductivity is indepen-

dent of collision frequency, and its value is intermediate between κ‖ and κ⊥ (κ× ∼ √
κ‖κ⊥). In addition,

since q× is perpendicular to ∇T , this heat flux is along isotherms and does not change the temperature

of the system. There is also an analogous stress term for viscosity, which is called gyro-viscosity, though

it is not a real viscosity because the gyro-viscous stress does not lead to any dissipation (viscous heating).

Perpendicular electric conductivity is obtained somewhat differently. Recall that electric conductivity

is simply associated directly with the collisional drag force Fd. In the parallel case, we can rewrite the

definition of conductivity as
J‖

σ‖
=
Fd,‖

e
, (42)

which can be directly generalized to the perpendicular direction. Since the drag force has the same form

in the parallel and perpendicular cases

F‖ ∼ mvd,‖

τ
=
mJ‖

enτ
, F⊥ ∼ mvd,⊥

τ
=
mJ⊥
enτ

, (43)

we then find

σ⊥ ∼ σ‖ ∼ ne2τ

m
. (44)

More careful analysis using the Fokker-Planck equation gives σ⊥ ≈ σ‖/2. Electric conductivity feeds to

the generalized Ohm’s law discussed earlier in the course, which can be written as

E +
V e ×B

c
= ne

(

J‖

σ‖
+

J⊥

σ⊥

)

− ∇ ·Pe

en
, (45)

where V e and Pe are the electron fluid velocity and the electron pressure tensor.
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