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Fluid Closure and Kinetic MHD

The collisional Boltzmann equation for species s (= i, e) reads

∂fs
∂t

+ v · ∇fs +

[
qs
ms

(

E +
v

c
×B

)]

· ∂fs
∂v

=
∑

s′

Css′ (fs, fs′) ≡ C[fs] , (1)

where C[fs] is the collision operator, and incorporate contributions from collisions with all other species

s′. Fluid equations can be systematically obtained by taking moments from this equation.

Moments of the Distribution Function

The kth moment of the distribution function fs has the form of

Mk(r, t) ≡
∫

vv...v
︸ ︷︷ ︸

k

fs(r,v, t)d
3v , (2)

which is a tensor of rank k. The set of {Mk, k = 0, 1, 2, ...} can be viewed as an alternative representation

of the distribution function, which uniquely specifies fs if it is sufficiently smooth.

The zeroth moment of fs simply gives particle number density

ns(r, t) =

∫

fs(r,v, t)d
3v . (3)

The first moment gives particle flux density, from which we can define flow velocity

V s(r, t) =
1

ns

∫

vfs(r,v, t)d
3v . (4)

The second moment describes the flow of momentum, and gives the stress tensor

Ts(r, t) =

∫

msvvfs(r,v, t)d
3v . (5)

The physical meaning of the higher moments becomes more clear if we work in the rest frame of the

fluid. The relative velocity of particles in this frame is

w = v − V s(r, t) . (6)

Now, the stress tensor can be rewritten as

Ts = Ps +msnsV sV s , (7)

where the pressure tensor is

Ps(r, t) =

∫

mswwfs(r,v, t)d
3v . (8)
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The scalar pressure Ps is given by averaging the diagonal component of the pressure tensor, or

Ps(r, t) =
1

3
Tr(Ps) =

1

3

∫

msw
2
sf(r,v, t)d

3v , (9)

and the tensor pressure can be rewritten as

Ps = PsI+Π , (10)

where Π is called the viscous stress tensor. We can also define internal energy density as

ǫs(r, t) =
1

2
Tr(Ps) =

3

2
Ps . (11)

We note that if the distribution function is isotropic and Maxwellian, it is then uniquely specified by ns

V s, and Ps (or temperature Ts). In this case, the pressure tensor is diagonal, with

Ps(r, t) = PsI , Ps = nsTs , ǫs =
3

2
nsTs . (12)

where I is the identity tensor. This is the basis of fluid description of plasmas.

There is also an important third moment measuring the energy flux density

Ks(r, t) =
1

2

∫

msv
2vfs(r,v, t)d

3v . (13)

Similarly, it can be rewritten as

Ks = qs +Ps · V s + ǫsV s +
1

2
msnsV

2
s V s = qs +

[(

ǫs +
1

2
msnsV

2
s

)

I+Ps

]

· V s , (14)

where

qs(r, t) =
1

2

∫

msw
2wfs(r,v, t)d

3v . (15)

Note that qs vanishes for a Maxwellian distribution, and other terms simply correspond to fluxes of

internal energy and bulk motion, as well as the PdV work.

Moments of the Collision Operator

From the Fokker-Planck equation, we see that the collision term takes the form of

C(fs) =
∂

∂v
· Js . (16)

Clearly, the zeroth moment of the collision operator is zero, which describes particle number conservation.

The first order moment of the collision operator gives frictional force between particle species

∫

d3vmsvC(fs) =
∑

s′

∫

d3vmsvCss′(fs, fs′) ≡
∑

s′

Rss′ . (17)

The symmetry of the collision operator (e.g., in Landau form) leads to Rss′ = −Rs′s, which describes mo-

mentum conservation. For brevity, we can define Rs ≡
∑

s′ Rss′ , and momentum conservation guarantees
∑

s Rs = 0.
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The second moment of the collision operator with msv
2/2 describes the energy transfer between

particle species. It is again convenient to decompose v = V s +w, and the result is

1

2

∫

d3vms(V
2
s + w2 + 2V s · w)C(fs) =

∑

s′

(V s ·Rss′ +Qss′) , (18)

where

Qss′ ≡
1

2

∫

d3vmsw
2Css′ , (19)

which describes the rate of kinetic energy change experienced by species s in its rest frame due to collisions

with species s′. For brevity, we can define Qs ≡
∑

s′ Qss′ . Energy conservation can be expressed as

∑

s

(V s ·Rs +Qs) = 0 , (20)

and in the case of simple electron-proton plasmas, it reads

Qi +Qe = (V i − V e) ·Re =
J

ne
·Re . (21)

This corresponds to Joule heating.

Moments of the Kinetic Equation

To take moments of the kinetic equation, it is convenient to write it in conservative form

∂fs
∂t

+∇ · (vfs) +∇v · (asfs) = C[fs] , (22)

where

as ≡
qs
ms

(

E +
v

c
×B

)

. (23)

Taking the zeroth moment, we have the continuity equation

∂ns

∂t
+∇ · (nsV s) = 0 . (24)

This holds separately for electrons and ions. Because the ions carry almost all the inertia, the fluid

density and velocity is essentially ρ ≈ nimi, V ≈ V i. We then obtain

∂ρ

∂t
+∇ · (ρV ) = 0 . (25)

This is the MHD continuity equation.

Taking the first velocity moment, we have

ms
∂nsV s

∂t
+∇ ·Ts = qsns

(

E +
V s

c
×B

)

+Rs , (26)

or

msns
dV s

dt
= −∇ ·Ps + qsns

(

E +
V s

c
×B

)

+Rs , (27)

where we have used convective derivative

d/dt ≡ ∂/∂t+ V s · ∇ . (28)
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Again, it holds separately for electrons and ions. On scales much larger than the Debye length, quasi-

neutrality guarantees ni = ne. We can sum over the electron and ion momentum equations, and ignore

electron inertia. Note that the frictional forces cancel because Ri = −Re, and electric fields cancel, we

obtain

ρ
dV

∂t
= −∇ · (Pi +Pe) +

1

c
J ×B = −∇ ·

(

P+
B2

8π
I− BB

4π

)

, (29)

where P ≡ Pi +Pe is the total pressure tensor. This is the momentum equation for MHD.

Separately, the electron momentum equation gives the generalized Ohm’s law, which feeds into the

MHD induction equation

mene
dV e

dt
+∇ ·Pe = −ene

(

E +
V e

c
×B

)

+Re , (30)

or

E = −V i

c
×B +

Re

ene
+

1

ene

J ×B

c
− 1

ene
∇ ·Pe −

me

e

dV e

dt
, (31)

where the frictional force Re ∝ J/σ is the source of resistivity. If we are interested in scales much larger

than the electron inertial length, we can ignore the electron inertia term (essentially, electrons respond

very rapidly to shortcut any additional electric field), and

E = −V

c
×B + J/σ +

1

ene

J ×B

c
− 1

ene
∇ ·Pe . (32)

This leads to the induction equation in MHD, generalized to include the Hall and electron pressure

gradient terms (they again can be dropped if we are interested in scales much larger than the ion inertial

length).

Taking the second moment with msv
2/2, we have

∂

∂t

(
3

2
Ps +

1

2
msnsV

2
s

)

+∇ ·Ks − qsnsE · V s = V s ·Rs +Qs , (33)

or

d

dt

(
3

2
Ps+

1

2
msnsV

2
s

)

+∇·(Ps ·V s)+

(
3

2
Ps+

1

2
msnsV

2
s

)

∇·V s+∇·qs = qsnsE ·V s+V s ·Rs+Qs , (34)

To simplify it further, we can dot V s on both sides of the momentum equation (27), subtract it from the

above equation, and make use of the continuity equation (24), to obtain

3

2

dPs

dt
+

3

2
Ps∇ · V s +Ps : ∇V s +∇ · qs = Qs . (35)

Summing again over contributions from both electrons and ions, and using (14) for Ks, we have

3

2

dP

dt
+

3

2
P∇ · V +P : ∇V +∇ · q =

J

en
·Re . (36)

where q = qi + qe is the total heat flux. If we assume the plasma velocity distribution is isotropic, as in

MHD, we have P = P I, and ǫ = (3/2)P , the above equation reduces to

3

2

dP

dt
+

5

2
P∇ · V +∇ · q =

J

en
·Re . (37)
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Together with the continuity equation, dρ/dt+ ρ∇ ·V = 0, and if we further ignore heat conduction and

internal heating, we find
d

dt

(
P

ρ5/3

)

= 0 . (38)

This expresses the adiabatic equation of state in ideal MHD.

Fluid Closure

We notice from the derivation of fluid equations above that the system of equations is incomplete.

The continuity equation describes the evolution of fluid density ns, the zeroth moment of the distribution

function fs, but it depends on fluid velocity V s, which is the first moment on fs. The momentum

equation describes how V s should evolve, but depends on the next order moment, the pressure tensor

Ps. We have not fully addressed how the pressure tensor should evolve, but only considered the evolution

of its trace ǫs, the internal energy, and see that its evolution further depends on the third moment, the

heat flux qs. This process can continue forever. In order to complete the set of fluid equations, we must

incorporate some additional information to truncate the series by expressing the higher-order moments

using the lower-order moments. This process is called closure.

In ideal MHD, we close the system by assuming that (1) collisions are sufficiently frequent that particle

distribution is Maxwellian, and (2) we are interested in low-frequency (≪ collision and gyro frequencies),

long-wavelength (≫ Larmor radius and ion inertial length) regimes. Under these assumptions, pressure

is treated as a scalar, closed by an adiabatic equation of state (38). Although in practice, (1) is rarely

satisfied, ideal MHD can still provide a moderately accurate description of plasmas so long as the distri-

bution function has second moments that can be roughly associated with a temperature, the electrical

conductivity is very large, and thermal conductivity is very small.

Weakly Collisional Plasmas

From now on, let us consider the limit where particle gyro-frequency ΩL is much higher than collision

frequency

ΩL ≫ νc , (equivalently, rL ≪ λmfp) (39)

Quite often, this condition is satisfied in astrophysical plasmas. In this case, it can be shown that the

distribution function fs is gyrotropic in the leading order (see problem set), which means f is largely

independent of the gyrophase φ. This allows us to further simplify the equations by averaging over the

gyro-phase. In particular, we have

ww =
w2

⊥

2
(I− bb) + w2

‖bb , (40)

where b is the unit vector along the magnetic field. We can then define parallel and perpendicular pressure

Ps,‖ ≡
∫

mw2
‖fs(v)d

3v , Ps,⊥ ≡
∫

m
w2

⊥

2
fs(v)d

3v . (41)

If we take b to be along the ẑ-axis, then the pressure tensor in this coordinate system is diagonal, given
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by

Ps = Ps,⊥(I− bb) + Ps,‖bb =







Ps,⊥ 0 0

0 Ps,⊥ 0

0 0 Ps,‖







= PsI+
1

3
(Ps,⊥ − Ps,‖)(I − 3bb) , (42)

where total pressure Ps = (2/3)Ps,⊥ + (1/3)Ps,‖. The extra term in the last equality contributes to the

viscous stress tensor Πs. With these expressions, the momentum equation can be rewritten as

ρ
dV

∂t
= −∇

(

P⊥ +
B2

8π

)

+∇ ·
[

bb

(

P⊥ − P‖ +
B2

4π

)]

. (43)

Thus, the dynamics of the plasma is governed by the combined (perpendicular) thermal and magnetic

pressure, and a parallel stress consisting of the pressure anisotropy (P⊥ − P‖) and magnetic tension. It

can also be written as

ρ
dV

∂t
= −∇P +

J ×B

c
−∇ ·

[
1

3
(Ps,⊥ − Ps,‖)(I− 3bb)

]

, (44)

where we separate the anisotropic pressure as a viscous stress.

In weakly collisional plasmas, there is no reason that parallel and perpendicular pressure should be

equal. In fact, pressure anisotropy can arise simply from fluid motion. This is best illustrated from the

double-adiabatic theory, outlined below.

The double-adiabatic theory

Recall from particle orbit theory, magnetic moment µ ≡ mv2⊥/2B is an adiabatic invariant. On scales

much larger than particle gyro-radius, conservation of µ implies that

p⊥ ∝ ρ〈v2⊥〉 ∝ 〈µ〉ρB ∝ ρB . (45)

This means that p⊥/nB is a constant.

Moreover, recall the definition of the longitudinal invariant J = mv‖l, where l is the length between

two fluid elements. As the fluid travels, l varies accordingly dl/dt = l(dV/dl). It can be shown by

combining the continuity and induction equations that B/n satisfies the same equation (along the field

line). This can be understood from the fact that total number of particles nlA =const, where A is the

cross sectional area enclosed by the line of force. Because of flux freezing, we have A ∼ 1/B. Hence,

p‖ ∝ ρ〈v2‖〉 ∝ ρ〈J2/l2〉 ∝ ρ3/B2 . (46)

Therefore, p‖B
2/n3 is conserved.

The discussion above leads to the “double-adiabatic” equations

d

dt

(
P⊥

nB

)

= 0 ,
d

dt

(
P‖B

2

n3

)

= 0 , (47)

which was first derived by Chew, Goldberger & Low (1956). It is the counterpart of the MHD adiabatic

equation of state (38) in the collisionless limit. It nicely demonstrates how parallel and perpendicular

pressure evolve differently in weakly collisional plasmas. In reality, rate of change in pressure must also

include contributions from the heat flux and collisional relaxation.
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Kinetic MHD

We have seen that under the assumption (39), particle distribution function is largely gyro-tropic,

with distribution function as f = f(t, r, v‖, v⊥). This allows us to obtain a fairly accurate description of

plasmas by averaging the Boltzmann equation over particle gyro-phase. This is reminiscent of the guiding

center approximation introduced earlier in the particle orbit theory. In doing so, we are assuming the

low-frequency, long-wavelength limit

krL ≪ 1 , ω ≪ ΩL . (48)

The outcome of this gyro-phase averaging is the so-called “drift-kinetic” equation, a one-dimensional

equation on the distribution function along the field lines. Because the geometry of the field lines is

reflected in this equation, the guiding center drift motion is automatically incorporated. The derivation

of this equation (Kulsrud, 1964) involves a fair amount of math, and it can be expressed in different

forms. The most transparent form of this equation is expressed by using f = f(v‖, µ) instead of f(v‖, v⊥)

as variables, where µ is magnetic moment. It reads (Kulsrud, 1983)

Dfs
Dt

+

(
e

m
E‖ − µ∇‖B − b · DUE

Dt

)
∂fs
∂v‖

= 〈C(fs)〉 (49)

where D/Dt ≡ ∂/∂t+ (UE + v‖b) · ∇, with UE being the E ×B drift velocity, and angle bracket on the

right hand side represents gyro-phase averaging.

The physical interpretation of this equation is clear: particles are advected by the E×B drift velocity;

the equation does not explicitly depend on µ as a consequence of µ conservation; particles are subject to

parallel forces, including a parallel electric field, magnetic mirror force, and a force due to the change in

E ×B drift velocity as the particle travels.

This equation (49) lies in the core of the system known as Kinetic MHD, and is often the starting

point of many astrophysical plasma problems. The general procedure for using this equation is as follows.

From fs, one calculates Ps,‖ and Ps,⊥, from which one can evolve velocity V s using (27), and then B

from the induction equation using the Ohm’s law. This feeds back to (49), and the system of equations

is complete. Essentially, the kinetic MHD formalism is given by a set of fluid equations closed by a 1D

kinetic equation along the magnetic field.

Braginskii Equations (two-fluid)

The Braginskii equations are the lowest order closure in the limit where

kλmfp ≪ 1 , and
d

dt
≪ 1

τ
. (50)

Behind this assumption is that all quantities vary slowly in space (small gradients) and time, so that

collisional relaxation drives the particle distribution function close to a Maxwellian. These equations

were first presented in a celebrated review monograph by Braginskii (1965).

The Braginskii equations are written for the electron and ion fluids separately, which we list below
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(in the limit of ΩLτ ≫ 1 for both electrons and ions). The fluid equations for electrons and ions are

dn

dt
+ n∇ · V e = 0 ,

men
dV e

dt
+∇Pe +∇ ·Πe + en(E + V e ×B) = R ,

3

2

dPe

dt
+

5

2
Pe∇ · V e +Πe : ∇V e +∇ · qe = Qe ,

(51)

and

dn

dt
+ n∇ · V i = 0 ,

min
dV i

dt
+∇Pi +∇ ·Πi − en(E + V i ×B) = −R ,

3

2

dPi

dt
+

5

2
Pi∇ · V i +Πi : ∇V i +∇ · qi = Qi .

(52)

Note that n = ni = ne by charge neutrality.

The source terms on the right hand sides are

R = ne

(
J‖

σ‖
+

J⊥

σ⊥

)

− 0.71nk∇‖Te −
3n

2|Ωe|τe
b× k∇⊥Te ,

Qi =
3me

mi

nk(Te − Ti)

τe
,

Qe = −Qi +
J ·R
ne

,

(53)

where parallel and perpendicular conductivities are

σ⊥ =
ne2τe
me

, σ‖ = 1.96σ⊥ . (54)

The symbols ∇‖ ≡ bb · ∇, ∇⊥ = ∇ − ∇‖ denote gradients parallel and perpendicular to the magnetic

field. The first term in F corresponds to parallel and perpendicular electric conductivity. The second

term in F is called the thermal force, which has its origin in the fact that faster electrons experience less

frictional forces (and hence there is a force imbalance across a temperature gradient). The third term is

related to the gyro-magnetic particle effect: at a given location across a temperature gradient, particles

gyrating from the hotter side on average experience less drag than particles gyrating from the cooler side.

The Qi,e terms describe energy exchange between electrons and ions, together with Joule heating which

mainly acting on the electrons.

The heat fluxes are given by

qe = −κe
‖∇‖Te − κe

⊥∇⊥Te − κe
×b×∇⊥Te − 0.71

kTe

e
j‖ −

3

2|Ωe|τee
b× j⊥ ,

qi = −κi
‖∇‖Ti − κi

⊥∇⊥Ti − κi
×b×∇⊥Ti ,

(55)

with thermal conductivities given by

κe
‖ = 3.2

nτekTe

me
, κi

‖ = 3.9
nτikTi

mi
, (56)
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κe
⊥ = 4.7

nkTe

meΩ2
eτe

, κi
⊥ = 2

nkTi

miΩ2
i τi

, (57)

κe
× =

5nkTe

2me|Ωe|
, κi

× =
nkTi

2mi|Ωi|
. (58)

Most of the terms have been discussed in the previous lecture, including parallel and perpendicular heat

fluxes and the cross thermal conduction. The last two terms in qe correspond to transport associated

with the relative drift between the electron and ion fluids. While it is straightforward to interpret the

fourth term as associated with electron drift parallel to the magnetic field, the fifth term is more tricky.

In the presence of perpendicular drift, the drag force experienced by the electrons does not cancel over

one gyration, leading a drift in the j⊥ ×B direction.

Finally, the viscous stress is given by

Π =
∑

n=0,4

Πn , (59)

where

Π0 = −1

3
η0

(

I− 3bb

)(

I− 3bb

)

: ∇V ,

Π1 = −η1

[

I⊥ ·W · I⊥ +
1

2
I⊥(b ·W · b)

]

,

Π2 = −4η1(I⊥ ·W · bb+ bb ·W · I⊥) ,

Π3 =
η3
2
(b×W · I⊥ − I⊥ ·W × b) ,

Π4 = 2η3(b×W · bb− bb ·W × b) ,

(60)

and

I⊥ = I− bb , Wαβ ≡ ∂Vα

∂xβ
+

∂Vβ

∂xα
− 2

3
δαβ∇ · V . (61)

Of course, there are separate stress tensors for the electrons and ions. The corresponding viscosity

coefficients are given by

ηe0 = 0.73nτekTe , ηi0 = 0.96nτikTi . (62)

ηe1 = 0.51
nkTe

Ω2
eτe

, ηi1 =
3nkTi

10Ω2
i τi

. (63)

ηe3 = −nkTe

2|Ωe|
, ηi3 =

nkTi

2Ωi
. (64)

In the above, the tensor Π0 is known as parallel viscosity, Π1 and Π2 are called perpendicular viscos-

ity, which are strongly suppressed by magnetic fields, Π3 and Π4 describe the gyroviscosity, which are

dissipation-free. In the limit we are considering (ΩLτ ≫ 1), parallel viscosity dominates over other terms.

The transport coefficients involve the definition of collision times τi and τe, given by

τe =
3

4
√
2π ln Λ

(kTe)
3/2m

1/2
e

ne4
,

τi =
3

4
√
π ln Λ

(kTi)
3/2m

1/2
i

ne4
.

(65)
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They are again derived from the Fokker-Planck calculations of the electron-ion collision and ion-ion

collision times.

Braginskii Equations (single-fluid)

In most situations, as we are interested in scales much larger than the ion inertia length, the velocity

difference in V e and V i from the current is small (i.e., the Hall term, together with the pressure gradient

term in the generalized Ohm’s law can be neglected), and we can sum over the electron and ion equations

to obtain a system of single-fluid equations. In this set of equations, we can ignore terms associated with

electron inertia. Heat conduction and resistivity are dominated by parallel transport by the electrons,

while viscosity is mainly contributed by the parallel viscosity from the ions, and we can ignore other

sub-dominant terms. The result is

dρ

∂t
= −ρ∇ · V ,

ρ
dV

∂t
= −∇P +∇ ·

[
1

3
ηi0

(

I− 3bb

)(

I− 3bb

)

: ∇V

]

+
1

c
J ×B ,

3

2

dP

dt
= −5

2
P∇ · V +

1

3
ηi0

[(

I− 3bb

)

: ∇V

]2

+∇ · (κe
‖bb · ∇Te) +E · J ,

(66)

where the electric and magnetic fields are determined by

E = −V i

c
×B +

(
J‖

σ‖
+

J⊥

σ⊥

)

,
∂B

∂t
= −c∇×E . (67)

where coefficients σ‖, σ⊥, κ
e
‖ and ηi0 have been given previously in (54), (56), (62).

By comparing the momentum equation above and (44), we find

P⊥ − P‖ = −ηi0(I− 3bb) : ∇V ≈ Pi

νi
(I− 3bb) : ∇V , (68)

where we have used (62), and Pi = nkTi, νi = 1/τi. This describes the relaxation process: pressure

anisotropy is developed by velocity gradient (with respect to the magnetic fields), while collision drives

the system towards pressure isotropy. Higher collision frequency leads to lower level of pressure anisotropy.

Anisotropic thermal conduction and anisotropic viscosity are the two most salient features of the

Braginskii MHD. In weakly collisional systems, thermal conduction along the magnetic field can be very

efficient due to the long mean free path, and magnetic field lines become isotherms; temperature gradient

is almost always perpendicular to the field lines, due to inefficient perpendicular thermal conduction.

Similarly, with large parallel viscosity and negligible perpendicular viscosity, field lines become “isotachs”:

flow speed tends to be constant along a field line.
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