PLAnetary Transits and Oscillations of stars (PLATO)

Bi Sheng Seminar Advisor: Prof. Bai Xuening

- Are we alone?
- What is PLATO?
- What can PLATO do?
- How to do?

Are we alone?

Ancient Greek Philosopher: Plato

UNLESS WE LOVE AND ARE LOVED, EACH OF US IS ALONE, EACH OF US IS DEEPLY LONELY.

QUOTE**HD**.COM

Mortimer Adler American Philosopher

Are we alone?

Am I alone?

Answer could be given by PLATO

- Are we alone?
- What is PLATO?
- What can PLATO do?
- How to do?

PLATO

PLAnetary Transits and Oscillations of stars

Theme	What are the conditions for planet formation and the emergence of life?	6999		
Primary Goal	Detection and characterisation of terrestrial exoplanets around bright solar-type stars, with emphasis on planets orbiting in the habitable zone.	P		
Measurements	 Photometric monitoring of a large number of bright stars for the detection of planetary transits and the determination of the planetary radii (around 3% accuracy) Ground-based radial velocity follow-up observations for the determination of the planetary masses (around 10% accuracy) Asteroseismology for the determination of stellar masses, radii, and ages (up to 10% of the main sequence lifetime) Identification of bright targets for spectroscopic follow-up observations of planetary atmospheres with other ground and space facilities 	 Proposed: 2 Launch: 202 	2007 26?	
Wavelength	Optical			
Telescope	A number of small, optically fast, wide-field telescopes			
Orbit	Large amplitude libration orbit around Sun-Earth Lagrangian point, L2			
Lifetime	4 years of nominal science operations; satellite built and verified for an in-orbit lifetime of 6.5 years, accommodating consumables for 8.5 years			
Туре	M-class Mission			

plato

	PLATO	TESS	
Telescope aperture	12cm	10cm	
Telescope field of view	1037 deg ²	576 deg ²	
Number of telescopes	24	4	
Telescope arrangement	Four groups of six.	Adjacent pointing to give strip-like	
	Each group points together.	field-of-view	
	Groups have overlapping fields-of-view.		
Total field of view (per pointing)	2232 deg ²	2304 deg ²	
Time per pointing	2+ years	27 days	
Number of pointings	2	30	
Pixel size	15 arcseconds	21 arcseconds	
Wavelength range	500-1000nm	600-1000nm	
Cadence	25s (for main sample, M-dwarfs, brightest	60s (for brightest 200,000 stars)	
	stars)	1800s (full frame images)	
	600s (for statistical sample of ≥245,000 stars)		
Main targets	Bright, Sun-like stars	Bright, M-dwarf stars	
Main objective	Earth-sized planets in the habitable	Rocky planets	
-	zone		
Number of stars	≥265,000	≥500,000	
Noise	≤34ppm in 1hr (for main sample)	≤200ppm in 1hr	
	≤800ppm in 1hr (for M-dwarfs)		
Predicted yield	>4,000 planets	~1,700 planets	
	2-120 small planets in habitable zone of	640-1340 planets around M-dwarfs	
	solar-like stars	1-4 small planets in the habitable	
		zones around M dwarfs	
Nominal mission duration	4 years	2 years	
Location	L2 (1.5 Million Km from Earth)	Orbiting between Earth and the	
		Moon's orbit (384,000 Km from the	
		Earth)	

TESS, 2018 Cost: 200M USD

PLATO, 2026? Cost: ??? EUR

NEED HELP: Radial velocity

VLT 2017: 10 cm/s in 15 min for a V= 8 star 20 cm/s in 1 hour for a V= 11 star.

PLATO: Transit Mission

- Orbit: Period, semi-major axis, orbital inclination, eccentricity, spin-orbit aliment
- Planet parameters:
 - radius, mass, density,
 - effective temperature, albedo, atmospheric composition, surface heat distribution,
 - exomoons, planetary rings, et al.

PLATO: Oscillations

Asteroseismology: intrinsic Oscillations

of stars.

Accurate stellar masses, radii, and ages

from asteroseismology.

Oscillation frequencies of 15,000 dwarf and subgiant stars with V>11.

- Are we alone?
- What is PLATO?
- What can PLATO do?
- How to do?

The unique of our solar system

Credit: DLR - H. Rauer, 2016

Interiors of terrestrial and gas planets

Mass and Radius of Kepler-138 Planets

ROCKY

Kepler-138 planets

Kepler planets

4

Solar system planets

5

PLATO will be unique in providing vital constraints for planetary interior models. 6

Evolution of planetary systems

Complementary science

- Observe many directions
 - Time-variable phenomena
- Asteroseismic characterisation
 - Stellar and galactic physics
- Photometric measurements
 - Various additional subjects

- Are we alone?
- What is PLATO?
- What can PLATO do?
- How to do?

Payload: Cameras

- 24 'normal' camera:
 - Stars fainter than mV = 8,
 - Cadence: 25 s
- 2 'fast' camera:
 - Stars in the magnitude range mV 4~8,
 - Cadence: 2.5 s.
 - The red or blue part of the optical spectrum, respectively

Payload Module

Why so many cameras?

- Science requirements call for a very large field of view coupled with a sensitivity of a 1 m-class telescope.
- Total field of about 2232 deg² per pointing, with various parts of the field monitored by 24, 18, 12 or 6 cameras.
- This strategy optimizes both the number of targets observed at a given noise level and their brightness.

- Long-duration Observation Phase (LOP) :
 - Small planets out to the Habitable Zone of solar-like stars.
 - Continuous observations of two sky fields, lasting 2 years each.
- Step-and-stare Observation Phase (SOP):
 - Shorter-period planet detections
 - Different science cases such as galactic exploration.

• PLATO: Transits and Oscillations

- Detect terrestrial exoPLAnets
- Character bulk properties
- Habitability of other planets(Are we alone?)