

COBE and WMAP

Zhuo Cheng

Supervisors: Yi Mao and Jianfeng Zhou

Outline

- An introduction to CMB
- COBE
 - Instrument
 - Scientific results
- Anisotropy of CMB
- WMAP
 - Compare to COBE
 - Scientific results
- Summary

The origin of CMB

COBE(Cosmic Background Explorer)

- Launch Date: November 18, 1989
- **Deactivated:** December 23, 1993
- The Orbits : Sun-synchronous
- Perigee: 877.8 km
- **Apogee**: 891.4 km
- Inclination: 98.95 deg
- Spin rate: 0.8 rpm

The inclination and altitude are chosen so that the orbital plane precesses 360° in 1 year.

Instruments of COBE

FIRAS: a spectrophotometer used to measure the spectrum of the CMB

DMR: a microwave instrument that would map variations in the CMB

DIRBE: a multi-wavelength infrared detector used to map dust emission

	Instrument		
PARAMETER	DIRBE	DMR	FIRAS
Wavelength bands	1.25 μ m ^a 15-30 μ m 2.2 μ m ^a 40-80 μ m 3.5 μ m ^a 80-120 μ m 4.9 μ m 120-200 μ m 8-15 μ m 200-300 μ m	3.3 mm 5.7 mm 9.6 mm	0.5–10 mm 0.1–0.5 mm
Spectral resolution	$\lambda/\Delta\lambda = 1-10$	550 MHz (9.6 mm) 850 MHz (5.7 mm) 850 MHz (3.3 mm)	$\Delta v > 0.2 \text{ cm}^{-1} (v < 20 \text{ cm}^{-1}) \Delta v > 1. \text{ cm}^{-1} (v > 20 \text{ cm}^{-1})$
Field of view	0°.7 square	7° FWHM	7° circular diameter
Instrument type	Multiband filter photometer/ polarimeter	6 Dicke-switched differential microwave radiometers	Polarizing Michelson interferometer
Flux collector	Off-axis Gregorian telescope 19 cm primary	Dual corrugated horns separated by 60°	Flared horn
Look direction ^b	30° off spin axis	Opposing pairs each 30° off spin axis	On spin axis
Instrument temperature	1.55 K (at bolometers)	300 K (9.6 mm) 140 K (5.7 and 3.3 mm)	1.55 K (at bolometers)
Detector	Photovoltaics bands 1–4 Photoconductors bands 5–8 Composite bolometers bands 9, 10	Diode mixers	Composite bolometers
Sensitivity	rms noise per FOV in 10 months ^c Band νI_{ν} (10 ⁻⁹ W m ⁻² sr ⁻¹) 1.25 μ m 1.0 2.2 μ m 0.9 3.5 μ m 0.6 4.9 μ m 0.5 8-15 μ m 0.3 15-30 μ m 0.4 40-80 μ m 0.4 80-120 μ m 0.1 120-200 μ m 11.0 200-300 μ m 4.0	 rms noise for a 1 s integration period (mK Hz^{-1/2}) 31 GHz Ch A 43. Ch B 42. 53 GHz Ch A 15.2 Ch B 16.4 90 GHz Ch A 27.5 Ch B 19.2 	rms noise per FOV in 10 months for 3-20 cm ⁻¹ $\Delta T = 0.24$ mK $\Delta \nu I_{\nu} = 10^{-9}$ W m ⁻² sr ⁻¹

COBE INSTRUMENT CHARACTERISTICS

COBE result 1: Black-body curve of CMB

- The CMB spectrum was measured with a precision of 0.005%.
- The results confirmed the Big Bang theory.
- paving the way for NASA's
 WMAP mission and ESA's Planck mission.

 $T = 2.725 \pm 0.002$ K

COBE result 2: anisotropy of CMB

- Top: uncorrected
- Middle: after dipole subtraction (due to the solar system movement)
- Bottom: after subtraction of the Galactic emission

The fluctuations are extremely faint
$$\frac{\Delta T}{T} \sim 10^{-5}$$

Outline

- The origin of CMB
- COBE
 - Instrument
 - Scientific results
- Anisotropy of CMB
- WMAP
 - Compare to COBE
 - Scientific results
- Summary

Anisotropy from Inhomogeneity

$$\Theta(\hat{\mathbf{n}}) = \frac{T(\hat{\mathbf{n}}) - \bar{T}}{\bar{T}} = \sum_{\ell m} \Theta_{\ell m} Y_{\ell m}(\hat{\mathbf{n}}) \,.$$

$$\langle \Theta_{\ell m}^* \Theta_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell} .$$

We need more precise measurements about CMB fluctuations!

WMAP(Wilkinson Microwave Anisotropy Probe)

- Launch date: June 30th, 2001
- End data collection: August 19th, 2010
- **The orbits**: 1°–10° Lissajous orbit about second Lagrange point, L2
- Science Objectives: measured temperature differences across the sky in CMB

Property	K-Band ^a	Ka-Band ^a	Q-Band ^a	V-Band ^a	W-Band ^a
Wavelength (mm) ^b	13	9.1	7.3	4.9	3.2
Frequency (GHz) ^b	23	33	41	61	94
Bandwidth (GHz) ^{b,c}	5.5	7.0	8.3	14.0	20.5
Number of Differencing Assemblies	1	1	2	2	4
Number of Radiometers	2	2	4	4	8
Number of Channels	4	4	8	8	16
Beam size (deg) ^{b,d}	0.88	0.66	0.51	0.35	0.22
System temperature, T_{sys} (K) ^{b,e}	29	39	59	92	145
Sensitivity (mK s ^{1/2}) ^b	0.8	0.8	1.0	1.2	1.6 ₁₁

BAND-SPECIFIC INSTRUMENT CHARACTERISTICS

Comparision

	СОВЕ		WN	ΊΑΡ
Orbits	Sun-synchronous		Second Lagrange poin	
Thermal stability	Dewar(杜瓦瓶)		Passive thermal radiator	
Resolution	7°		0.	2°
Frequency bands and Sensitivity(mK s ^{1/2})	31 GHz 53 GHz 90 GHz	43 15.2 27.5	23 GHz 33 GHz 41 GHz 61 GHz 94 GHz	0.8 0.8 1.0 1.2 1.6

Improvements of WMAP

• 5 frequency bands

facilitate foreground radiation subtraction

• A differential experiment

measures the temperature difference rather than absolute value

• Orbit

very stable thermal environment and near 100% observing efficiency

Scan strategy

allows for a comparison of many sky pixels on many time scales

WMAP result: CMB map

14

• What can we learn from the anisotropies of CMB?

First peak: curvature

 $\Omega_{tot} = \Omega_b + \Omega_{DM} + \Omega_{DE}$ and Curvature = $1 - \Omega_{tot}$

The first peak in the power spectrum of the anisotropies depend sensitively on the spatial curvature of the universe.

Second peak: baryons

Fig. 15. Baryons and matter. Baryons change the relative heights of the even and odd peaks through their inertia in the plasma. The matter-radiation ratio also changes the overall amplitude of the oscillations from driving effects. Adapted from Hu and Dodelson (2002).

Second peak: baryons

Second peak is suppressed compared with the first and third.

The baryon-photon ratio

controls the even-odd modulation of peak heights through the baryon loading effect.

Best-fit cosmological parameters from WMAP nine-year results

Parameter	Symbol	Best fit (WMAP only)	Best fit (WMAP + eCMB + BAO + H ₀)			
Age of the universe (Ga)	t_0	13.74 ± 0.11	13.772 ± 0.059			
Hubble's constant (km/ _{Mpc·s})	H_0	70.0 ± 2.2	69.32 ± 0.80			
Baryon density	Ω_b	0.0463 ± 0.0024	0.046 28 ± 0.000 93			
Physical baryon density	$\Omega_b h^2$	0.022 64 ± 0.000 50	0.022 23 ± 0.000 33			
Cold dark matter density	Ω_c	0.233 ± 0.023	0.2402 +0.0088 -0.0087			
Physical cold dark matter density	$\Omega_c h^2$	0.1138 ± 0.0045	0.1153 ± 0.0019			
Dark energy density	Ω_{Λ}	0.721 ±0.025	0.7135 +0.0095 -0.0096			
Density fluctuations at 8h ⁻¹ Mpc	σ_8	0.821 ± 0.023	0.820 +0.013 -0.014			
Scalar spectral index	n_s	0.972 ± 0.013	0.9608 ± 0.0080			
Reionization optical depth	τ	0.089 ± 0.014	0.081 ± 0.012			
Curvature	$1-\Omega_{tot}$	-0.037 +0.044 -0.042	-0.0027 +0.0039 -0.0038			
Tensor-to-scalar ratio ($k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.38 (95% CL)	< 0.13 (95% CL)			
Running scalar spectral index	$dn_s/d\ln k$	-0.019 ± 0.025	-0.023 ± 0.011			

Best-fit cosmological parameters from WMAP nine-year results^[15]

Provides an independent evidence for dark energy.

This parameter is related to the Primordial fluctuations.

Primordial fluctuations

Many inflationary models predict that the scalar component of the fluctuations obeys a power law

 $\mathcal{P}_{
m s}(k) \propto k^{n_{
m s}-1}.$

$$\delta(ec{x}) \stackrel{ ext{def}}{=} rac{
ho(ec{x})}{ar{
ho}} - 1 = \int \mathrm{d}k \ \delta_k \ e^{iec{k}\cdotec{x}}$$

$$\langle \delta_k \delta_{k'}
angle = rac{2\pi^2}{k^3} \, \delta(k-k') \, \mathcal{P}(k).$$

 $n_s = 1$ corresponding to scale invariant fluctuations.

The measurement of n_s can help us set constraints on parameters within inflationary theory!

Scalar spectral index: n_s

FIG. 4.— Measurements of the scalar spectral index with CMB and BAO data. Left to right - contours of $(D_V(0.57)/r_s, n_s)$, (H_0, n_s) , $(\Omega_c h^2, n_s)$. Black contours show constraints using WMAP nine-year data alone; blue contours include SPT and ACT data (WMAP+eCMB); red contours add the BAO prior(WMAP+eCMB+BAO). The BAO prior provides an independent measurement of the low-redshift distance, $D_v(z)/r_s$, which maps to constraints on $\Omega_c h^2$ and H_0 . When combined with CMB data, the joint constraints require a tilt in the primordial spectral index $(n_s < 1)$ at the 5σ level.

$$n_s = 0.9579^{+0.0081}_{-0.0082}$$

The basic predictions of single-field inflation models for properties of primordial curvature perturbations are well supported by the data.

CMB Polarization

There are two types of polarization.

• E-modes

Thomson scattering.

• B-modes

gravitational lensing of E-modes.

Primordial gravitational waves

CMB Polarization(WMAP 9-yr result)

- E-modes have been observed.
- No evidence for B-modes caused by Primordial gravitational waves.
- Tensor to scale ratio:

r < 0.38(95% CL)

Summary

- The COBE-project can be regarded as the starting point for cosmology as a precision science and it provided 2 key evidences for the Big Bang theory.
 - Black-body curve of CMB (high precision 0.005%)
 - Intrinsic anisotropy of CMB ($\frac{\Delta T}{T} \sim 10^{-5}$)
- WMAP's measurements played a key role in establishing the Lambda-CDM model.
 - produced the first fine-resolution (0.2 degree) full-sky CMB map
 - reducing the allowed volume of cosmological parameters by a factor in excess of 68,000

Angular Peaks

Modes caught at extrema of their oscillations become the peaks in the CMB power spectrum.

Galactic emission

- The main emission mechanisms:
 - synchrotron radiation(同步辐射)
 - free-free emission(自由发射)
 - astrophysical dust emissions

