Dark Energy Spectroscopic Instrument(DESI)

Student: Jiacheng Meng
Advisor: Prof. Xiaofeng Wang 2018.11.2

Content

1. The introduction of DESI
2. Survey design of DESI
3. Science goals of DESI
4. Complementarity with Other Surveys
5. The Introduction of DESI

- DESI is a five-year galaxy redshift survey. It will start in 2019.
- Construct a 3D map of galaxies with 30 millions of galaxy's spectra.
- DESI is the successor to the successful BOSS survey.

Why do we need DESI survey?

BOSS + eBOSS quasar absorption
eBOSS quasar clustering
Huge Success

Telescope

- Reflector telescope

- 1000 fibers
- Fibers plugged into the halo by hand
- 5000 robotic positioners
- Reconfigured within 3 minutes
- All aotumatic!

DESI Three Channel Spectrograph
500 Fibers
One of 10

2. Survey design of DESI

Survey	Bands	Location	Area/deg^2
BASS	g, r,	NGC+SGC (Dec $\leq+34 \mathrm{deg})$	9 k
DECaLs	g, r, z	NGC (Dec $\geq+34 \mathrm{deg})$	5 k
MzLS	z	NGC (Dec $\geq+34 \mathrm{deg})$	5 k
WISE-W1,W2	$3.4,4.6 \mu m$	All-sky	All-sky

Galaxy Type	Redshift range	Bands used	Number
Luminous red galaxy (LRG)	$0.4 \sim 1.0$	r, z, W1	4 M
Emission line galaxy (EIG)	$0.6 \sim 1.6$	$\mathrm{~g}, \mathrm{r}, \mathrm{z}$	17.1 M
Quasi-stellar object (QSO) (tracers)	<2.1	$\mathrm{~g}, \mathrm{r}, \mathrm{z}, \mathrm{W} 1, \mathrm{~W} 2$	1.7 M
Quasi-stellar object (QSO) (Ly- α)	>2.1	$\mathrm{~g}, \mathrm{r}, \mathrm{z}, \mathrm{W} 1, \mathrm{~W} 2$	0.7 M
Bright galaxy sample	$0.05 \sim 0.4$	r	9.8 M

LRG

EIG

QSO

2000 tiles cover 14000 deg^2

A layer
5 layers in total

LRGs
 EIGs
 QSOs

Dark time:

3. Science Goals of DESI

2 Science Motivation and Requirements 3
2.1 Introduction |3
2.2 Measuring Distances with Baryon Acoustic Oscillations 6
2.2.1 Theory 6
2.2.2 BAO in Galaxies 6
2.2.3 BAO in the Ly- α Forest |9
2.3 Measuring Growth of Structure with Redshift Space Distortions 12
2.3.1 Theory 12
2.3.2 Systematics 13
2.3.3 Current Status of RSD Measurements 14
2.4 Distance, Growth, Dark Energy, and Curvature Constraint Forecasts 17
2.4.1 Forecasting Overview 17
2.4.2 Baseline Survey 19
2.4.3 Summary of Forecasts 21
2.4.4 Forecasting Details 25
2.5 Cosmology Beyond Dark Energy 28
2.5.1 Inflation 28
2.5.2 Neutrinos 32
2.6 The Milky Way Survey: Near-Field Cosmology from Stellar Spectroscopy 35
2.7 Complementarity with Other Surveys 36
2.7.1 Synergies with Planck and Future CMB Experiments 36
2.7.2 Synergies of DESI with DES and LSST 36
2.7.3 Synergies of DESI with Euclid/WFIRST 39

The nature of Dark Energy

Type la supernova

Accelerated expansion universe

$$
\rho=w p
$$

Explanation:

1. Cosmological constant

Baryon Acoustic Oscillations(BAO)

Quantum fluctuations from inflation

Sound wave

BAO: standard ruler

Sound horizon:150 Mpc, precision 0.3\%

Viewed transversely $s=(1+z) D_{A} \theta=\theta \int_{0}^{z} \frac{c d z^{\prime}}{H(z)^{\prime}}$
Viewed along the line of sight $\frac{c \Delta z}{H(z)} \approx s$

Constrain cosmological parameter, distinguish different dark energy model.

BAO distance scale error from different redshift survey

DESI have better BAO measurement

Expansion rate of the Universe as a function of redshift. Upper plot is the result from BOSS. The lower plot is the result predicted by DESI

The w0 - wa plane showing projected limits (68\%) from DESI and BOSS

4. Complementarity with Other Surveys

Image Survey

DARK ENERGY SURVEY

Constrain cosmological parameter more precisely
Large Synoptic Survey Telescope

Summary

- DESI will gain 30 million objects' spectra in five years and will play an important role in probing the dark energy
- The survey will make spectroscopic observations of BGS, LRGs, ELGs, QSOs more efficiently.
- BAO can be measured very precisely. Combining with image survey, cosmological parameter can be determined more precisely.

Reference

- The DESI Experiment Part I: Science,Targeting, and Survey Design(http:// adsabs.harvard.edu/abs/2016arXiv161100036D)
- The DESI Experiment Part II: Instrument Design (http://adsabs.harvard.edu/abs/ 2016arXiv161100037D)
- Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies(http://adsabs.harvard.edu/abs/2017JCAP...04..008P)
- Report of the Dark Energy Task Force(http://adsabs.harvard.edu/abs/2006astro.ph.. 9591A)
- The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges(http:// adsabs.harvard.edu/abs/2013MNRAS.433.1202S)

