

Very Large Telescope

Shiwu Zhang Supervised by Dandan Xu 2018.11.23

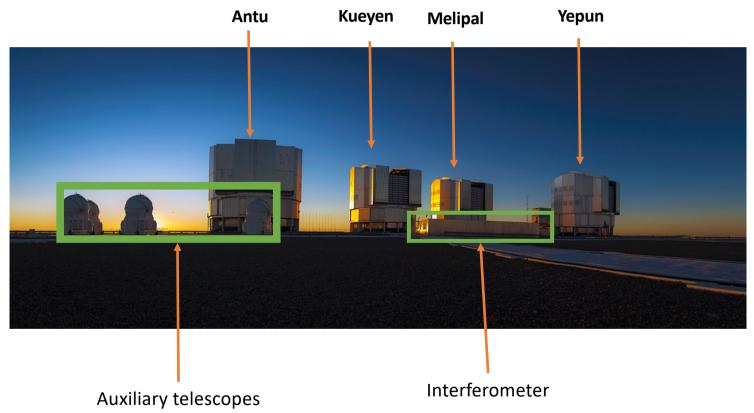
Outline

- What is VLT
 - Basic information
 - Main elements
 - VLTI
 - Comparison with LBT
- What has been done with VLT/VLTI
 - Fundamental sciences
 - Exoplanet detection
 - Cosmic evolution
- Summary

What is VLT

VLT Very Large Telescope

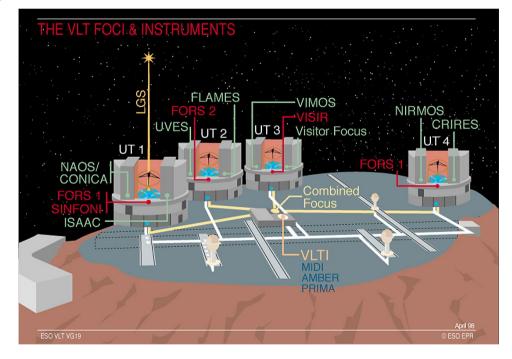
Full Name	Very Large Telescope
Observatory	Paranal Observatory
Location	Atacama Desert Chile
Coordinates	24.37.38S 70.24.15W
Organization	European South Observatory
Altitude	2,635m
First light	1998
Observing Time	340 nights per year
Wavelength coverage	300nm~20μm
Telescope style	Optical telescope
Diameter	four 8.2m mirrors and four 1.8m mirrors
Focal length	120m

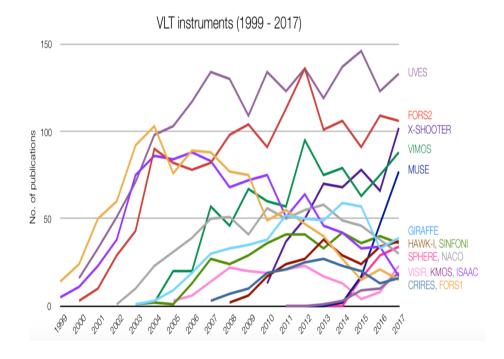

Main elements and Instrument of VLT

Main elements:

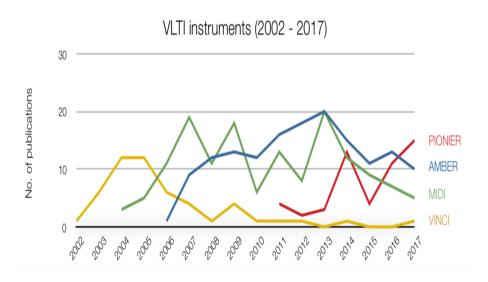
- Four 8.2m unit telescope
- Four 1.8m auxiliary telescope
- VLT Interferometer

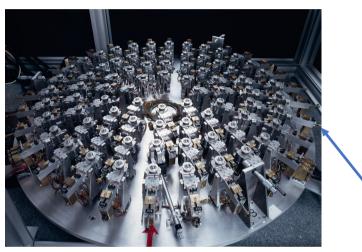
3 modes:

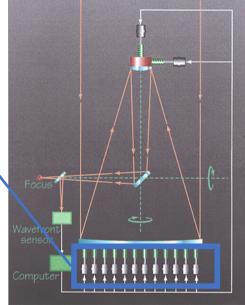

- Independent telescope mode
- Combined coherent mode(VLTI)
- Combined Incoherent mode

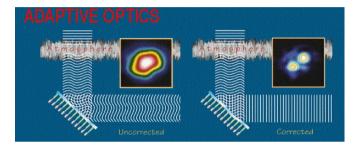

Instruments

	FORS
Optical Region(300-1000nm)	UVES
	FLAMES
	VIMOS 样
Near-IR Region(1-5µm)	ISAAC
	CONICA
	CRIRES
	NIRMOS
	SINFONI
Mid-IR Region(8-25µm)	VISIR

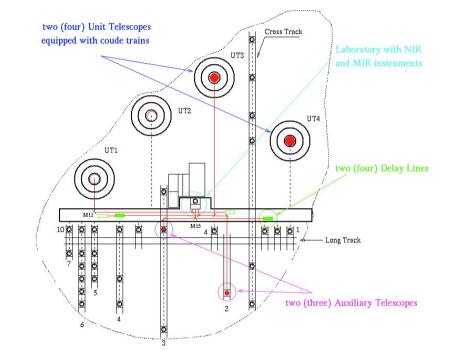

Multiobject spectrograph: 750 objects Widest FoV:4*7 arcmin*7 arcmin Wavelength coverage:300nm~25µm Maximum spectral resolution:110,000


Publication of instruments




The overall trend of number of publication increased in recent years

Active and Adaptive Optical Systems



3 mode to satisfy different requirements

help VLT to achieve angular resolution of 1 milliarcsecond when works on VLTI mode

VLTI Very Large Telescope Interferometer

- diffraction limit with minimum of adaptive control
- milliarcsecond angular resolution at near infrared wavelengths.
- Combine 2 UTs and 3 ATs simultaneously

VLT vs LBT

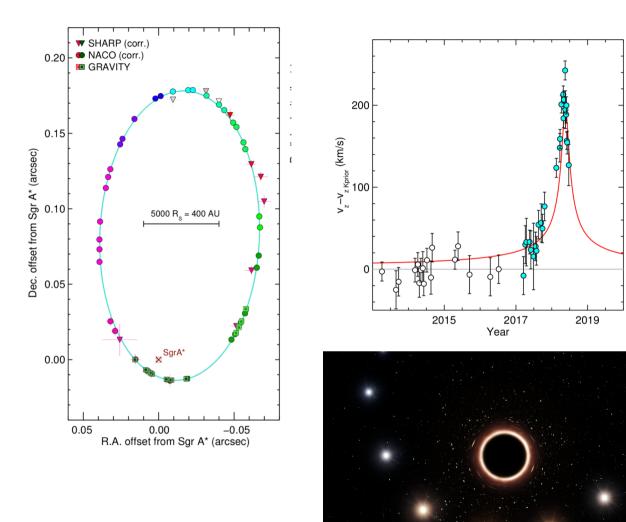
	Large Binary Telescope	Very Large Telescope
time	2005-	1998-
instruments	two 8.4m wide mirrors	 four8.2m wide mirrors four 1.8m auxiliary
Spectral resolution	270,000	110,000
coverage	320nm ~ 2.5µm	300nm ~ 25μm
cost	\$120 million	\$375million

What has been done with VLT/VLTI

1. Fundamental sciences -Test general relativity

2. Exoplanet detection

- Direct imaging
- 3. Cosmic evolution
 - Proto supercluster

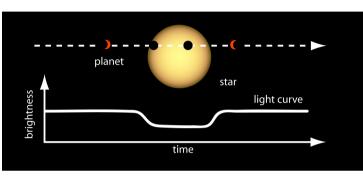

GRAVITY

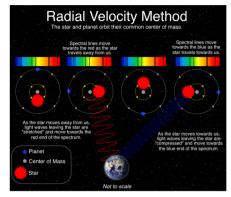
- Second-generation VLTI instrument for precision narrow-angle astrometry
- infrared astrometry with order 10 microarcsecond accuracy and phase referenced imaging with 4 milliarcsecond resolution
- Observe galactic central and central blackhole
- 4" FoV for ATs and 2" FoV for UTs

SINFONI

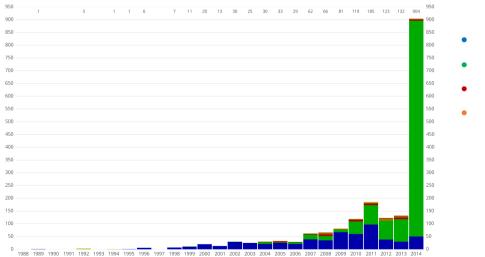
- Near-infrared integral field spectrograph
- UT4
- Infrared
- smallest pixel size is 0.025 arcseconds
- Spectal resolution: 1500–4000
- High spatial and spectral resolution studies of compact objects

- Observe S2 during May 2018 with GRAVITY, SINFONI and NACO when it reach the pericentre
- SINFONI is used to obtain the radial velocity while GRAVITY is used to detect proper motion
- Orbit velocity of S2 at pericentre is in excess of 25 million km/h (3% of the velocity of light)
- combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = $\Delta\lambda/\lambda \approx 200$ km/s/c

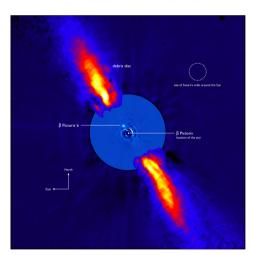

1. Fundamental sciences


-Test general gravity

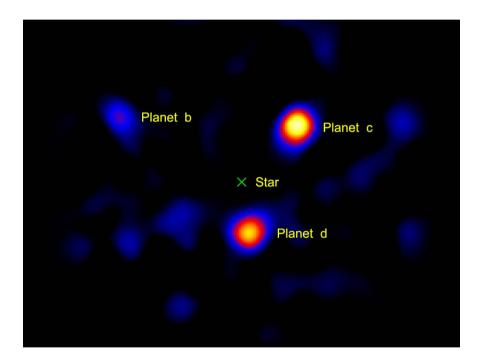
2. Exoplanet detection


- Direct imaging
- 3. Cosmic evolution
 - Proto-supercluster

With VLT, high contrast and high angle resolution, direct imaging is possible


Radial velocity

Statistic of method used for exoplanet detection

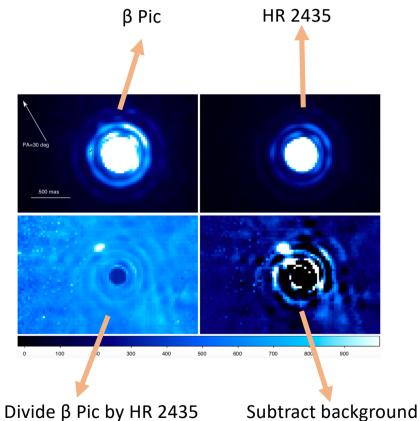

transit

- Blue: radial velocity
- Green: transit
- Red: direct imaging
- Orange: microlensing

Direct imaging

Why Direct Imaging

- Challenge 1: large ratio between star and planets flux
- Challenge 2: close proximity of planet to star
- Give constraints on planets' mass and radius simultaneously
- Determine chemical components of planet
- works better with planets with face-on orbits rather than edge-on orbits



Age~ $8^{+4}_{-3}Myr$ Distance between the to object~55AU Effective Temperature~1250 \pm 200K $M \sim 5 \pm 2M_{Jup}$

Source 2M1207(brown dwarf)

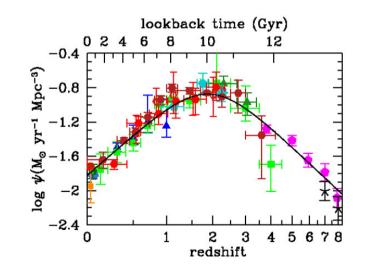
This is a binary system, divide β Pic $\,$ by HR 2435 to remove the PSF wings

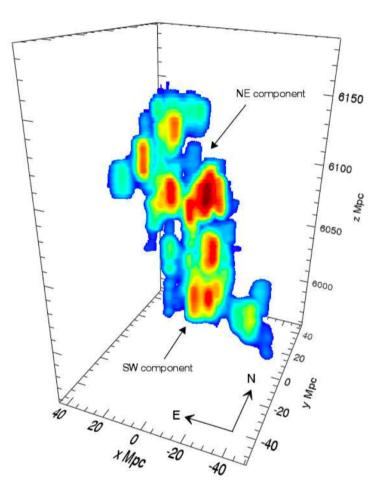
The companion candidate point-like signal is clearly visible in the divided and subtracted images. The maximum of the signal is about 190 ADU

1. Fundamental sciences

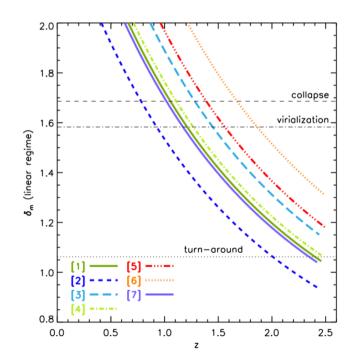
-Test general gravity

2. Exoplanet detection


- Direct imaging


- 3. Cosmic evolution
 - Proto-supercluster

- What are proto-cluster
 - Diffused collection of halos that will merge into final halo
 - crucial sites for studying how environment affects galaxy evolution in the early universe



- How to find them
 - Unbiased tracer(star-forming galaxies, IR-luminous galaxies)
 - identification of large intergalactic medium reservoirs(Lyα forest absorption etc)
- Stellar formation rate peaks at z ~ 2

- Construct 3D overdensity field over a volume of 100
 × 100 × 150 comoving Mpc3 with VIMOS of VLT
- Identify proto-supercluster over a volume of 60 × 60
 × 150 comoving Mpc3 whose total mass is
 4.8×10¹⁵ M_{sun}
- Seven density peaks in the range of 2.4<z<2.5 connected by filaments
- They will all be virialised at z ~ 0.8

Summary

- VLT is the most powerful ground-based optical telescope with high performance. It has very high angular resolution which reaches to milliarcsecond.
- VIT is also a productive telescope and will play a important role in the future in many area for example, fundamental sciences, detection of exoplanet and understanding of the formation and evolution of galaxies.

Reference

[1] Abuter R , Amorim A , Anugu N , et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole[J]. 2018.

[2] Chauvin G , Lagrange A M , Dumas C , et al. A Giant Planet Candidate near a Young Brown Dwarf[J]. Astronomy & Astrophysics, 2004, 425(2):603-611.

[3] A.M. Lagrange, D. Gratadour, G. Chauvin, et al. A probable giant planet imaged in the β Pictoris disk. VLT/NACO Deep L-band imaging[J]. Astronomy & Astrophysics, 2009.

[4] Muldrew S I, Hatch N A, Cooke E A. What are protoclusters? - Defining high-redshift galaxy clusters and protoclusters[J]. Monthly Notices of the Royal Astronomical Society, 2015, 452(3):2528.

[5] Cucciati O , Lemaux B C , Zamorani G , et al. The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at \$z=2.45\$ in VUDS[J]. 2018.

- [6] Observatory E S. The VLT White Book[J]. 1998.
- [7] Monder M J. New Publications from ESO[J]. Acta Agrobotanica, 2014, 67(2014):39-52.
- [8] https://www.eso.org/public/teles-instr/paranal-observatory/vlt/
- [9] https://en.wikipedia.org/wiki/Very_Large_Telescope#cite_note-18
- [10] https://www.eso.org/public/news/eso1825/
- [11] https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sinfoni/
- [12] https://www.eso.org/sci/facilities/paranal/instruments/gravity/overview.html
- [13] https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Direct_imaging
- [14] https://en.wikipedia.org/wiki/Large_Binocular_Telescope
- [15] http://www.lbto.org/