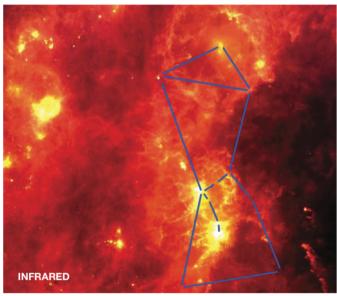
SOFIA: Stratospheric Observatory for Infrared Astronomy

Dongxin Yang Instructed by Prof. Shude Mao 2018.12.21

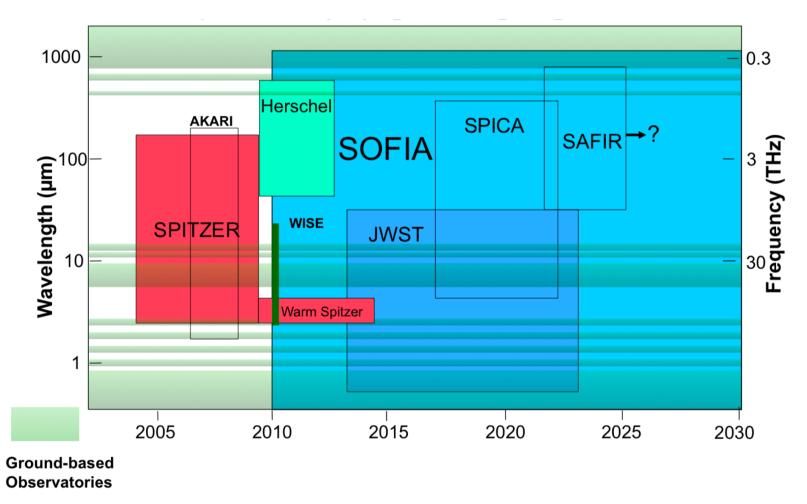
....

Outlines


- Infrared Astronomy
- Basic Facts: SOFIA
- Instruments & Results of SOFIA

Infrared Astronomy

Building New Stars


- stellar nurseries
- Building New Planets
 - disks of dust around stars
- Understanding Galaxies
 - massive central black holes in galaxies
- Observing the Past
 - cosmological red shift

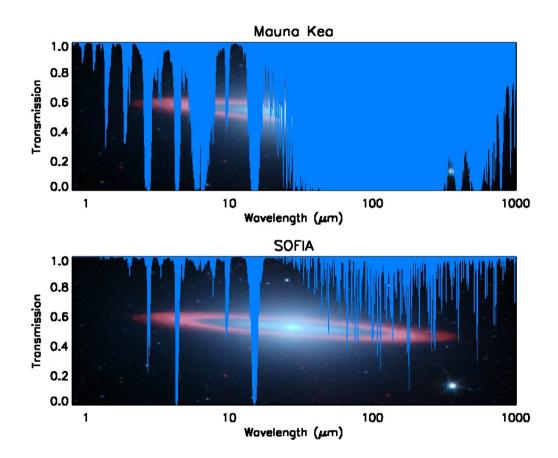
Views of the constellation Orion in visible light and infrared Young stars' presence is revealed by infrared radiation

Infrared Observatories

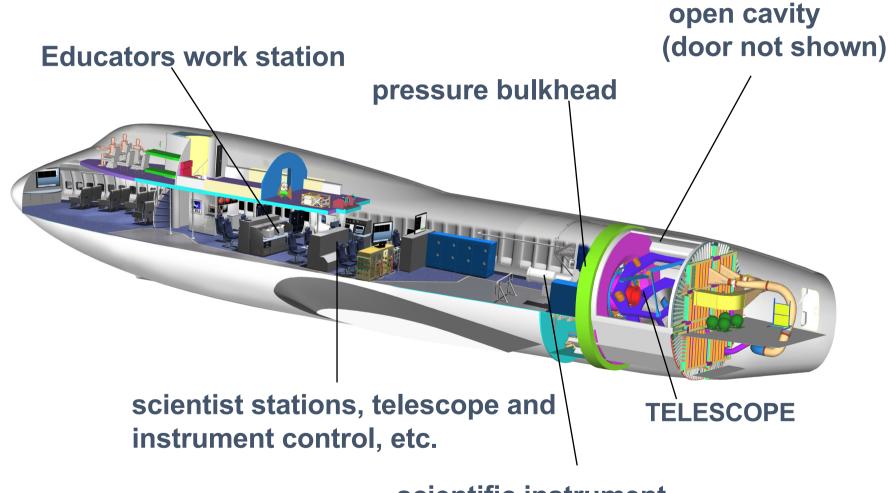
SOFIA's flight lifetime and time-frame will make it the premier facility for doing far-IR and submillimeter wave astronomy from 2010 until the mid 2030s.

Overview of SOFIA

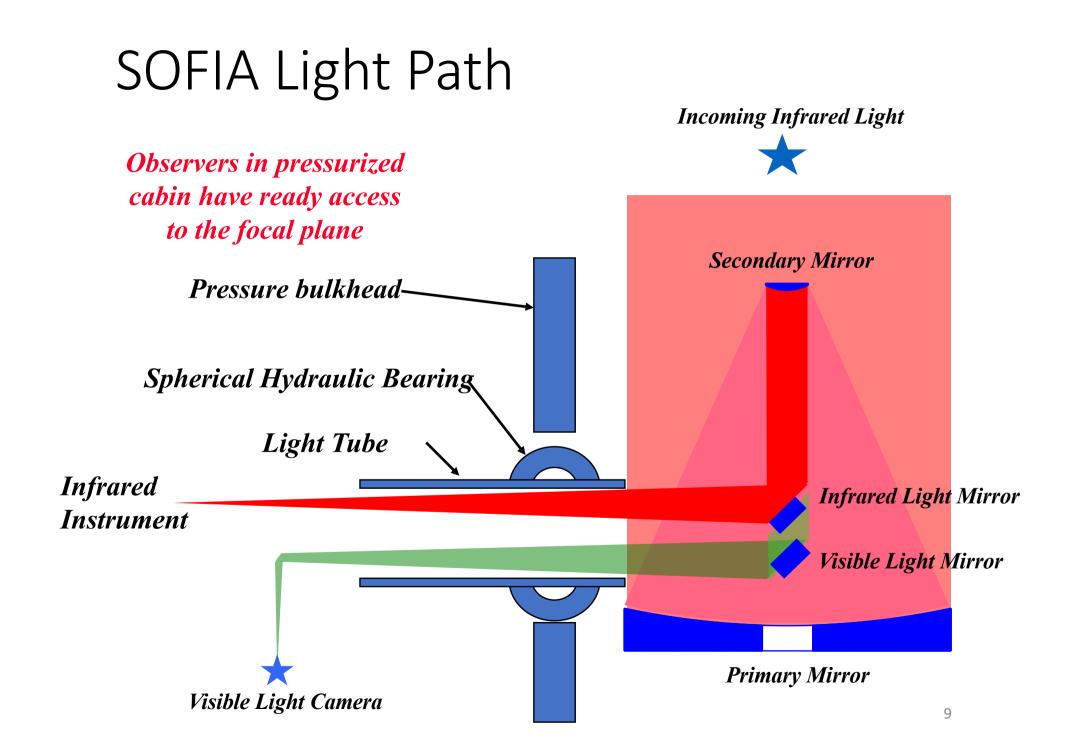
- SOFIA is 2.5 meter telescope in a modified B747SP aircraft
 - Optical-mm performance
 - Obscured IR (30-300 microns) most important
- Joint Program between the US (80%) and Germany (20%)
- First Science 2010 (NASA, DLR, USRA, DSI)
- Designed for 20 year lifetime



Overview of SOFIA (Cont)

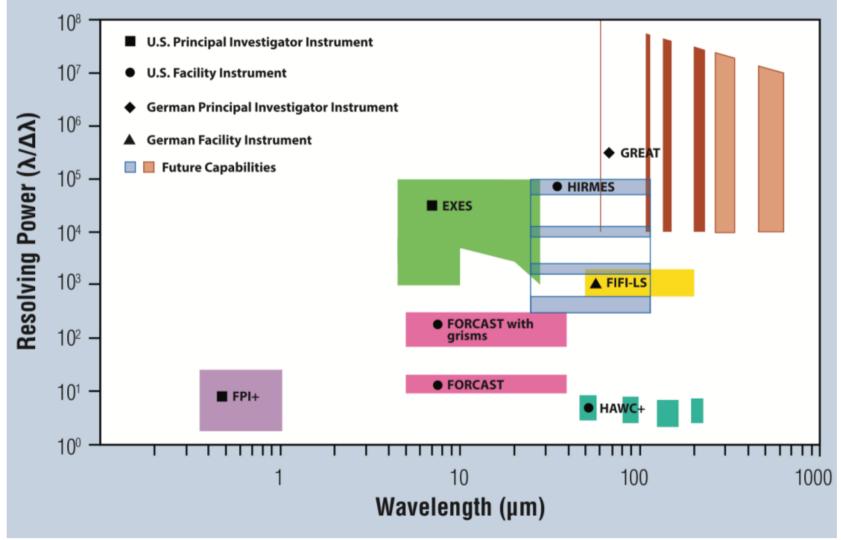

- Operating altitude
 - 39,000 to 45,000 feet (12 to 14 km)
 - Above > 99% of obscuring water vapor
- World Wide Deployments
- Ramp up to ~1000 science hours per year
- Build on Kuiper Airborne Obs (KAO) Heritage with improvements (More and longer flights, Facility Institutions, Science Support)
- Science flights originate from Palmdale, California; Aircraft operated by NASA Dryden Research Center (DFRC)
- Science Center is located at NASA Ames Research Center in Mountain View, California

Why SOFIA?


- Infrared transmission in the Stratosphere very good: >80% from 1 to 1000 microns
- Instrumentation: wide complement, rapidly interchangeable, state-of-the art
- Mobility: anywhere, anytime
- Long lifetime: ~20 years
- Outstanding platform to train future Instrumentalists
- Near Space Observatory that comes home after every flight

SOFIA — The Observatory

scientific instrument

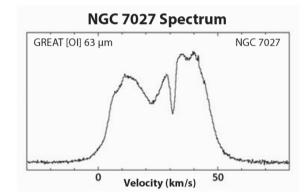


SOFIA Science Instruments

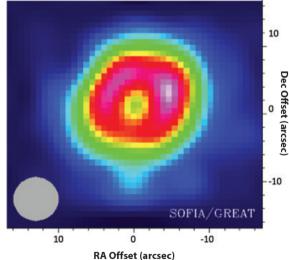
Name	Principal Investigator	Description	Wavelength Range Resolving Power R = $\lambda/\Delta\lambda$	Field of View Features
INFRARED INSTRUMENTS				
EXES	Matthew Richter, UC Davis	Mid-IR Echelle Spectrometer PI Instrument	4.5 – 28.3 μm R = 1,000 – 105	1" – 180" slit lengths 1024x1024 Si:As
FIFI-LS	Alfred Krabbe, DSI	Far-IR Imaging Grating Spectrometer Facility Instrument	51 – 200 μm R = 600 – 2,000	30" x 30" (Blue) 60" x 60" (Red) 2x(16x25) Ge:Ga
FORCAST	Terry Herter, Cornell University	Mid-IR Camera & Grism Spectrometer Facility Instrument	5 – 40 μm R = 100 – 300	3.2' x 3.2' 2x(256x256) Si:As, Si:Sb
GREAT	Rolf Güsten, MPlfR	Far-IR Heterodyne Spectrometer PI Instrument	63 – 612 μm R = 106 – 108	diffraction limited heterodyne receiver
HAWC+	Charles Dowell, JPL	Far-IR Bolometer Camera & Polarimeter Facility Instrument	50 – 240 μm R = 2.3 – 8.8	from 1.4' x 1.7' (53 μm) to 4.8' x 6.1' (215 μm) 3x(32x40) bolometer
HIRMES	Harvey Mosely, NASA Goddard	Mid-IR Bolometer Spectrometer Facility Instrument	25 – 122 μm R = 325 – 100,000	8.8" x 143" slit 119" x 103" imaging
OPTICAL INSTRUMENTS				
FPI+	Jürgen Wolf, DSI	Focal Plane Imager Facility Instrument	0.36 – 1.10 μm R = 0.9 – 29.0	8.7' x 8.7' 1024x1024 CCD

SOFIA Science Instruments

The SOFIA Instruments

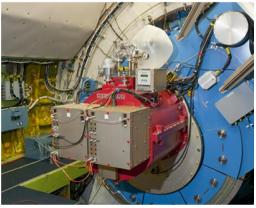

SOFIA Instruments: GREAT

- GREAT: German REceiver for Astronomy at Terahertz Frequencies
 - Detector: dual channel mixer
 - high resolution spectra (up to R=10⁸) in the 0.490– 4.747 THz range
 - Science: Spectroscopy of CII (158 $\mu m)$ and HD (112 $\mu m)$ and other lines
 - Targets: Galactic and extragalactic interstellar medium, circumstellar shells



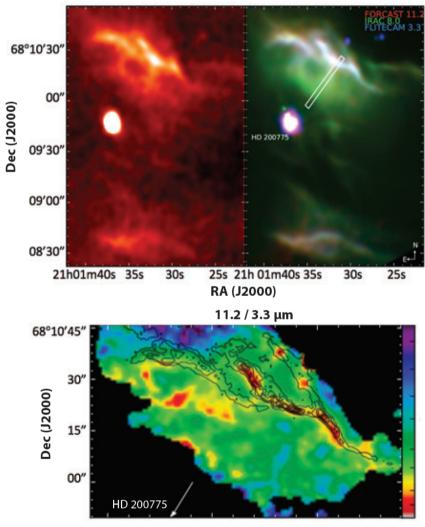
Scientific results of GREAT

- Planetary Nebula NGC 7027
- Spatial scans:
 - in the [OI] 63 μm line
 - integrated spectrum
 - spectral map
 - gray circle: effective angular resolution
- Displays the characteristic shape for an expanding, optically thin shell
- Shows that the expanding nebula has multiple components moving at different velocities



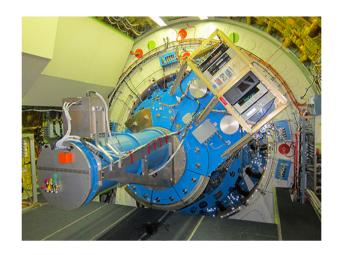
SOFIA Instruments: FORCAST

- FORCAST: Faint Object InfraRed Camera for the SOFIA Telescope
- Mid-IR Camera & Grism Spectrometer
 - Detectors: Dual channel
 - 256 x 256 arrays;
 - Wavelength Range $5 25 \mu m$ (Si:As Detector)
 - Wavelength Range 20 40 μm (Si:Sb Detector)
 - Field of View: 3.2' x 3.2'
 - Diffraction limited imaging for λ > 15 μm is expected during full operations
 - Science: Thermal and narrow band imaging And Grism spectroscopy
 - Targets: Circumstellar disks, Galactic Center, Galactic and extragalactic star formation



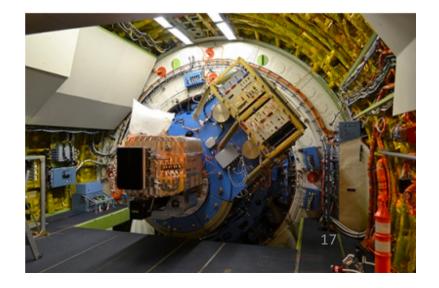
Scientific results of FORCAST

- PAH Tracing at 11.2 μm
 - FORCAST: 11.1 μm data of NGC 7023
 - Combined with FLITECAM 3.3 μm data and Spitzer/IRAC 8.0 μm data
 - yield a plot of the 11.2/3.3 μm flux ratio revealing the PAH size distribution
- Help to understand the photochemical evolution of PAHs resulting from illumination by the nearby star HD 200775.

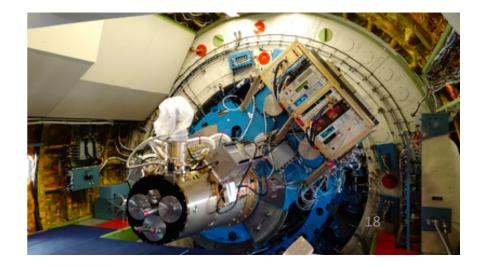

NGC 7023

FORCAST 11.1 µm Filter FORCAST+FLITECAM+Spitzer/IRAC

SOFIA Instruments: EXES


- EXES: Echelon-Cross-Echelle Spectrograph
- Mid-IR Echelle Spectrometer
 - Use a 1024² Si:As IBC detector
 - Wavelength Range $4.5-28.3 \ \mu m$
 - Three Resolving Powers:
 - High: ~ 105
 - Medium: ~ 104
 - Low: ~3000

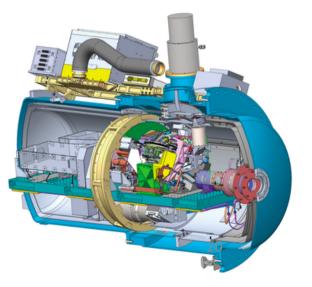
- Science: molecules which are blocked by the Earth's atmosphere, such as molecular hydrogen, water vapor, and methane
- Targets: molecular clouds, protoplanetary disks, interstellar shocks, circumstellar shells, and planetary atmospheres.


SOFIA Instruments: FIFI-LS

- FIFI-LS: Field Imaging Far-Infrared Line Spectrometer
- Far-IR Imaging Grating Spectrometer
 - Detectors: Dual channel 16 x 25 arrays;
 - 42 110 μm (Ge:Ga)
 - 120 210 μm (Ge:Ga stressed)
 - Field of View: 30" x 30" (blue), 60" x 60" (red)
 - Science: Imaging of extragalactic CII & OI
 - Targets: Extragalactic imaging

SOFIA Instruments: HAWC+

- HAWC+: High-resolution Airborne Wideband Camera Plus
- Far-IR Bolometer Camera and Polarimeter
 - bolometer detectors: 64x40 pixel array
 - Wavelength range: 42 210 μ m
 - Science: infrared source energetics and morphology, interstellar magnetic fields
 - Targets: interstellar dust


SOFIA Instruments: FPI+

- FPI+: Focal Plane Imager Plus
 - 1024x1024 CCD
 - Wavelength Range $0.36 1.10 \ \mu m$: optical
 - Field of View: 8.7' x 8.7'
 - Science result:
 - Pluto Stellar Occultation : analysis of the upper atmosphere

SOFIA Instruments: HIRMES

- HIRMES: HIgh Resolution Mid-infrarEd Spectrometer
- Expected to begin observations in 2019
- Background limited bolometers and a combination of Fabry-Perot interferometers and gratings
 - Low, Mid, and Imaging Spectroscopy modes : 16x64 Mo:Au TES bolometer pixel array
 - High mode : 8x16 pixel array
 - Wavelength Range $25 122 \ \mu m$
 - R = 325 100,000
 - Science: evolution of protoplanetary systems
 - Targets: protoplanetary systems, interstellar shocks

Summary

- Infrared Astronomy has extensive scientific prospects but can't be detected at low altitude because of vapor
- SOFIA has many advantages comparing with ground-based telescopes and satellites
- With different science instruments, SOFIA has abundant scientific results in different areas