

Cluster Lensing in the JWST Era

Applications of Cluster Lensing

Wenshuo Xu

Advisor: Dandan Xu

2022-03-03

SMACS J0723

Foreground Galaxy Cluster

Arclet Image

Multiple-Image System

credit: NASA, ESA, CSA, STScl

Outline

3 Steps to Be a "Strong Lensing Expert" Study on Lens Properties Study on Source Properties

Step I Deflection Effect

lens equation

$$\overrightarrow{\beta} = \overrightarrow{\theta} - \overrightarrow{\alpha}$$

 $\overrightarrow{\beta}$ (source plane): angular position of source

 $\overrightarrow{\theta}$ (image plane): observed angular position of image

 $\overrightarrow{\alpha}$: deflection angle

Step I Deflection Effect

arc-like image

• extended sources in the universe

Step II Magnification Effect

Flux (F) = Surface Brightness (S) \times Area (A)

• Gravitational lensing conserves the surface brightness of source • Gravitational lensing magnifies the area of source

magnification factor (extended source)

Step II Magnification Effect

Flux (F) = Surface Brightness (S) \times Area (A)

Gravitational lensing conserves the surface brightness of source

• Gravitational lensing magnifies the area of source

 $\bar{\mu}_{\text{image}} = \frac{F_{\text{image}}}{F_{\text{source}}}$ magnification factor (extended source) usually approximated with $\mu(\theta)$ in cluster lens correction

 $\mu(\vec{\theta}, \Sigma(\vec{\theta}), z_{s}, z_{l})$

magnification factor (infinitesimal source)

Step III Terminology

• critical curve and caustic

critical curve: positions on image plane $\{\vec{\theta}_c\}$ with infinite analytic magnification factor $\mu(\vec{\theta}_c) = \infty$

caustic : positions on source plane $\{\vec{\beta}_c\}$ corresponding to critical curves

- The vicinity of critical curve has extreme magnification gradient
- Images merge around critical curves and form arclet
- Critical curve reveals the reach size of strong lensing effect
 galaxy lens: ~ l arcsec
 cluster lens: ~10 arcsec - 1 arcmin

Strong Lensing Effect

- Deflection angle $(\overrightarrow{\alpha})$ and magnification factor (μ) depend on the mass distribution of lens and redshift.
- Gravitational lensing conserves the surface brightness of source and magnifies the area.
- Critical curve represents the positions with extreme magnification factor on image plane. Images merge around critical curve and form arclet.

Study on Lens

Gravitational lensing traces the distribution of total mass.

Iuminous matter, dark matter

Strong lensing only constrains the mass distribution at the core of cluster.

combine with other methods (e.g. weak lensing, X-ray) to study large-scale mass distribution

Study on Background Sources

• Zoom in to study substructures of high-z objects

• Facilitate identifying extremely high-z objects

Study on Background Sources Zoom in to study substructures of high-z objects

WHL0137-08 cluster field photometric $z_p \sim 9$ (Bradley et al. 2022)

SMACS 0723 cluster field spectroscopic $z_s = 1.43$ (Pascale et al. 2022)

Facilitate identifying extremely high-z objects

Abell 2744 cluster field spectroscopic $z_s = 4.0$ (Vanzella et al. 2022)

Study on Background Sources

Zoom in to study substructures of high-z objects

arclet formed by two merging images

Facilitate identifying extremely high-z objects

*original image credit to Fengwu Sun, UA

(same plotting scale)

third image

Source Properties: **Clumpy Star-Forming Regions**

• JWST near-infrared observation waveband: $0.6 \ \mu m - 5 \ \mu m$ (imaging&spectroscopic)

Observations in local universe indicates a hierarchical organization of star formation.

sub-kpc clumps, pc-scale stellar clusters

need extremely high resolution, cluster lensing HELPs!

nearby galaxy NGC 1566 (Gouliermis et al. 2020)

Source Properties: Clumpy Star-Forming Regions

wavelength

SED fitting of the 3 knots (Vanzella et al. 2022)

Physical properties of the substructure

(Lin et al. 2022) (Lin et al. 2022)

Study on Background Sources Zoom in to study substructures of high-z objects

• Facilitate identifying extremely high-z objects

(Welch et al. 2022)

SMACS0723_z16a $z_{\rm pho} \sim 16$ $\mu \sim 2.18$

 110.697°

SMACS0723_z12a $z_{\rm pho} \sim 12$ $\mu \sim 1.15$

extremely distant galaxy candidates (Atek et al. 2022)

Source Properties: **Biases from Lensing Effect**

- Gravitational lensing magnifies the total flux of high-z galaxies and modifies intrinsic properties.
 - intrinsic luminosity, stellar mass, scaling relations at high redshift

 110.697°

SMACS0723_z12a $z_{\rm pho} \sim 12$ $\mu \sim 1.15$

Summary

- Cluster lensing plays an essential role in the JWST era. It helps to study the properties of foreground cluster and background source.
- Magnification effect of cluster lensing greatly facilitate identifying and studying high redshift galaxies.
- Correction for magnification effect is a must, and it depends on the fitting of lens mass distribution. The improved capability of JWST can help to model the mass distribution of lens much more precisely.

Magnification Factor

more natural to define magnification factor for extended sources as area ratio

use differentiation to approximate for infinitesimal soure

 $\theta' d \theta' \qquad \qquad \vec{\beta} = \vec{\theta} - \vec{\alpha}$ $\overrightarrow{\alpha}(\overrightarrow{\theta}, \Sigma(\overrightarrow{\theta}), z_{s}, z_{l})$ (differentiation)

