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History of the first galaxy record

Andromeda
NGC 4853
LEDA 25177
3C 368
PHS 1614+051
SSA 22-HCM1
HCM-6A
GN-z11
HD1
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0.0026 Spectrum
0.13 Spectrum
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3.215 Spectrum + photometry
5.77 Spectrum + photometry
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History of the first galaxy record

 Hubble used the period-
luminosity relation of Cepheid to
determine the distance of
Andromeda.

 Andromeda is the first galaxy
confirmed outside our Milky Way.

.
v E——1 -
-

1
o (4] 20 ¥ o

F1c. r.—Light-curves of four Cepheids in M 31; ordinates, photographic magni-
tudes; abscissae, days.

Hubble. 1929



History of the first galaxy record

Measure spectra redshift later became a
standard way to measure distance of
more distant galaxies.

Humason used the shifts of emission lines
to determine the redshift and found the
most distant galaxy LEDA 25177 in 1936.
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Select the first galaxies

A photon emitted with wavelength
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blueward of lyman alpha will be
absorbed by neutron hydrogen in
IGM. WMMM o
* We can select high-z candidates =
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Hainline et al. 2023



Select the first galaxies

However, We may confuse low redshift
interlopers (dusty star-forming,
qguiescent with Balmer break) with high
redshift Lyman break galaxies.
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Confirm the first galaxies in pre-JWST era

* People found SXDF-NB1006-2 at z=7.2, using
HST, Spitzer and ground based telescopes.
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Confirm the first galaxies in pre-JWST era

* Using HST imaging and grism, people found
the most distant galaxy GN z-11 at z=11
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Why JWST?

Weakness of ground based telescopes:

* Low atmosphere opacity and
contaminating skylines in near-infrared , oo
range. ﬁa . WM }
* Hard to resolve compact high-z galaxies §3
limited by seeing. O e i 0%m_ 0nm tym  10pm 100pm 1mm 1cm  10cm Om  100m 1k
Wavelength
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* NIRSpec, NIRCam, MIRI, NIRISS can take R
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inaccessible to pervious telescopes. distorton. from pace).
* High spatial resolution to study high-z |
galaxies morphology (e.g., star-forming

regions, mergers).




Confirm the first galaxies with JWST

GN-z11
JADES-GN-z10-0

e HST only tentatively detected lyman break of GN z-11 | -,=10.60
* JWST clearly resolves Lyman break feature as well as many
emission lines with which redshift can be secured.
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Science cases with first galaxies



Searching for Pop Il star
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* The Hell emission may be :
produced by massive, metal free

Pop Il stars, which have strong
ionizing flux.

* Although Wolf-Rayet stars, X-ray
binaries, AGN may also produce it.
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Tentative detection of Hell emission?

Wang et al. 2022
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Constrain cosmology

An interacting galaxy at z=9.3

1kpc
* Mass of this galaxy is estimated by SED L
to be 2.5x10°Mg F150W+F200W
» All galaxies at this early time recorded -
before are below 5x10°M g |fmm szensmamens

* Evidence of rapid and efficient built up of
mass and metals in the immediate
aftermath of the Big Bang through |
mergers. ;
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Detection of absorption lines
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Constrain cosmology

€: efficiency of turning n
baryon to stellar mass % 107

JWST found several galaxies at z>8 that are so
massive than standard LCDM model could
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Constraining the Reionization Process

* The equivalent width of Lyman alpha emission constrains the IGM neutron
fraction.

* The discovery of GN z-11 supports the model that the faint galaxy play the major
role in reionization.
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Take home message

* With the ability of detecting near-infrared to
mid-infrared light and high diffraction limit,
JWST are able to resolve emission lines of very
high redshift galaxies (first galaxies).

 We may find evidence of Pop Il stars in the first
galaxies.

* The finding of massive galaxies at z>8 may
constrain the galaxies formation under LCDM
model.

* The finding of lyman alpha emission in first
galaxies could constrain reionization history.



