

THCA Student Seminar A GLIMPSE INTO GRAVITATIONAL WAVE SCIENCE

© Nobel Media. III. N. Elmehed Rainer Weiss

Barry C. Barish

Kip S. Thorne

- Physical Nature of GWs
- Astronomical sources of GWs
- Detection techniques
- Recent LIGO results

What is GW?

General relativity predicts:

Time-changing gravitational tidal field

propagates out at speed c

gravitational radiation!

Effect of GW on test masses

□ GW "pushes and pulls" on nearby test masses

- The proper distance between them is changed
- The fractional change is denoted by h, the "strain" field.
- \square h is related to the metric perturbation in a full GR

Spin-2 nature of GW

5

A GW can have two distinct polarization states:

Divergence-free, pure strain

These states do not change under a 180 degree rotation graviton is massless with spin 2

Quadrupole nature of GW radiation

Static quadrupole field: $g \sim \frac{\mathcal{I}}{r^4} \implies \frac{\mathcal{I}}{r}$ Quadrupole radiation!

Why is GW so weak?

- **Dust** or **ideal fluid**: no response to the pure strain field of GW.
- Viscous or elastic matter: attenuation/dispersion negligible.
- Array of good emitters (NSs): "GW blackbody"?

History note: NS-NS orbital decay

8

- □ PSR 1913+16
 - (Hulse & Taylor, 1975,
 - Nobel prize 1993)
 - Pulsar + NS binary
 - 1.4+1.4 solar masses
 - Orbital period 7.75hr
 - Separation ~several solar radii
 - First indirect evidence for GW
 - A dozen detected now by radio

Calculating the strain of a GW

$$g \approx \frac{\ddot{\mathcal{I}}}{r} \implies h \approx \frac{\ddot{\mathcal{I}}}{r}$$
$$h \approx \frac{Ms^2 f^2}{r} = \frac{r_{\rm sch}s^2}{r(cT)^2}$$

At the end of its life $r_{sch} \sim 3km$, $s \sim 30km$, $T \sim 10^{-3} s$

For a system in our own galaxy (r ~ 10kpc): $h \sim 10^{-18}$ For a system in Virgo cluster (r ~ 10Mpc): $h \sim 10^{-21}$

10 Part II. Astronomical sources of GWs

Binary GW sources

$$f_{\rm GW} = 2/P_{\rm orb}$$

 $t_{\rm merger} \propto M^{-5/3} f_{\rm GW}^{-8/3}$

For a $1M_{\odot}+1M_{\odot}$ binary

GW frequency	Merger time
4.5 * 10 ⁻⁵ Hz	10 ¹⁰ yr
4.5 * 10 ⁻² Hz (LISA band)	10 ² yr
45 Hz (LIGO band)	300s

BH-BH merger

12

BH-BH merger: numerical simulation

13

"3+1" decomposition scheme

$$= -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i) dt) (dx^j + \beta^j) dt)$$

No equations for α and β^i ! (freedom in choice of coords, needs a gauge)

Only 2 stable evolution schemes known

- Harmonic coordinates (Pretorius 2005, first success)
 - Baumgarte-Shapiro-Shibata-Nakamura (Baker et. al.; Campanelli et. al., 2006)

Evolution equations (hyperbolic)

Constraint equations (elliptic)

GW150914: first LIGO detection

14 Sep. 2015
Pre-merger: 35+30 solar
masses
After merger: 62 solar
masses, spin 0.68
Distance: 440 Mpc

Abbott et. al., Phys. Rev. Lett. 116, 061102 (2016)

NS-BH tidal disruption

15

- Happens when BH tidal field pulls NS apart
- Can tell by inspiral cutoff
- Can be used to probe NS equation of state

NS-NS merger

16

NS EoS, GRB association?

NS spin & pulsation (in our own galaxy)

17

Emission of GW from rotation of solid NS crust

- Emission of GW from NS pulsation
 - Modes damped down by GW and viscosity?
 - Look for unstable modes in fast-rotating NSs
 - Dynamical instabilities (hydrodynamic in origin)
 - Secular instability (driven by dissipation)

¹⁸ Part III. GW detection techniques

LIGO (Laser Interferometer GW Observatory)

LIGO's Two key challenges 4km Fabri-Pérot Cavity I 4 km Fabri-Pérot CavityI LASER Dower beam recycling Splitter mirror -

19

Solution: use a power recycling mirror

Everything seems impossible in LIGO

- □ Noises, noises, noises!!!
- Noises that affect the position of the mirror
 - Seismic vibrations (~10⁻⁴ cm)
 - Thermal vibrations of the mirror
 - Brownian motion of CM (~10⁻¹⁰ cm)
 - Fluctuation of mirror surface (~10⁻¹⁴ cm)
- Noises that affect the ability to measure the position of the mirror
 - Scattering by residual gas in the vacuum system
 - Photon shot noise
 - Radiation pressure

LIGO sensitivity curve

Abbott et. al., Phys. Rev. Lett. 116, 131103 (2016)

LIGO-like projects around the world

LISA (Laser Interferometer Space Antenna)

0.001

0.0001

0.01

Frequency, Hz

0.1

23

- LISA is back!! (planned 2034)
 - 3-spacecraft constellation
 - \square Arm length = 2.5 million km
 - No Fabri-Pérot cavity
 - Much lower frequency band
 - Much lower temperature

Pulsar timing

- GW passing earth can cause correlated changes in pulse arrival times
- Suitable for detecting very low frequency GWs
 - e.g. SMBH inspiral & merger
- □ For h~10⁻¹³, T_{GW} ~1yr, arrival time change~10⁻⁶s

credit: David J. Champion

25 Part IV. LIGO findings

Up till now: 4 BH-BH merger events

GW170817: NS-NS merger?

- Both LIGO and VIRGO detected a new kind of signal on August 17th
 - Optical counterpart (SSS17a) seen from NGC 4993 (40 Mpc away)
 - Chandra observed SGRB170817A from the same position on Aug. 19th
 - If real, first confirmation that short GRB can come from merging neutron stars.

