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Cosmic Rays (CRs): Introduction

Energies and rates of the cosmic-ray particles

'CA:’RICE] —a—
AMS —e—
BESS98 +—— |

oL
10 profons only Ryanetal. ——
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extraterrestrial particles.
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CRs: Early Research

* Victor Hess (1912): Measured the ionizing
radiation in the atmosphere thorough a series of
balloon experiments and concluded the radiation
came from out of the earth.

* Robert Millikan (1925): Named it “Cosmic Rays” .

e Jacob Clay (1927): Confirmed CRs were charged
particles.

* Where are they from?

e Baade and Zwicky (1934): First proposed CRs
originated from supernova remnants (SNRs).

Hess (center) on the
balloon (wikipedia)



CRs Acceleration: General Considerations

+ Lorentz Force: 242 = 4 (E + E XB)
dt m c

* Magnetic Fields do not work!
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* Only moving fields can work!
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e Zero in ideal MHD!



Towards the Origin of CRs: Fermi Acceleration

* Enrico Fermi (1949): Particles are accelerated in ISM thorough
collisions with “moving magnetic fields”.
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An illustration for Fermi’s model.

(The magnetic fields are carried by
non-relativistic moving clouds in ISM .
CRs randomly scatter from the clouds
and statistically gain energy. )



Second-Order Fermi Acceleration :

Particle v, E  Cloud After the collision Cloud
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Energy Spectrum:

* CRs gain energy at a rate that is proportional to their energy, and
escape from the acceleration region in a Poisson process with energy-
independent probability.

* Two scale time T .. and T,,.
* Initially, Ny particles with energy E;
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Disadvantages of 2nd-order Fermi Acceleration:

1% _ . L
* Normally - ~10~%, so 2rd-order Fermi Acceleration is too slow to
drive particles to high energy.

* The process can produce a power-law energy spectrum, but the
power-law index is unconstrained.

* There exists injection threshold energy for particle to overcome
ionization loss.



First-Order Fermi Acceleration: Diffusive Shock
Acceleration (DSA)

* Bell(1978);Blandford & Ostriker (1978) proved the 15t order Fermi
Acceleration could happened at the shock front.

Shocks are common in astrophysics
environment, e.g. supernova
explosion and Gamma ray bust.
Left: SNRs; Right:GRBs. (wikipedia)

Shocks are formed when the perturbation in a fluid
propogates faster than the sonic speed. Here is a picture
of the shock on a flying bullet (E.Mach & P. Salcher 1887).



Physics of Shock:

Va

Downstream Shock Front Upstream

® Discontinuity:

e.g. In high-Mach limit, g—d = Z—” =1 = 4 (r is the compression ratio)
u d

® Converging Flow
® Energy Dissipation



Physics of Shock:

Va

Downstream Shock Front Upstream

® Particles diffuse due to the turbulence.



Physics of Shock:

Downstream Shock Front Upstream

Energy initially in upstream frame : E;

Energy in downstream frame : E, = yyE{(1 + fuy);

Energy finally in upstream frame: E{ = yyE,(1 — Bu,);
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Energy Spectrum:

* Define the probability of CRs remain in accelerated region after one cycle:
 J.: the flux of CRs entering the shock from upstream

e J_:the flux of CRs returning to upstream from downstream

* J»: the flux of CRs escaping in far downstream

cpol_ _J

J+  J-too
* Index for power-law:s =1 + :—1 (s = 2whenr =4)

* From convection-diffusion equation:
* f(p) x p~* > f(E) « E~1>(non-relativistic particle)
f(E) < E~2 (relativistic particle)



Acceleration Rate:

* In one acceleration cycle for CRs (upstream-downstream-upstream):
4Dy | 4Dy

)

The duration time: tcycle = Vuc = Vgc

* D, and D, is the diffusion coefficient in upstream or downstream;
dE _ 4(Vg-W) E

 Acceleration rate: — ;
dt 3C tcycle

. .. dE
* In Bohm limit, -, = const — Epge Xt

* Without radiation loss, the total energy increases linearly with timel



Maximum energy achieved in SNRs:

e For a SNR shock, t~103years, V,,~5000kms~1, B,~10uG,
* The estimated maximum energy is ~PeV(10%°eV)!
* For higher energy, we should consider other sources!
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Numerical Simulations (1):

A. Spitkovsky (2008) first simulated a self-consistent particle acceleration
process with collisionless relativistic shock in electron-positron pair plasmas
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Numerical Simulations (2):

* D.Caprioli & A. Spitkovsky (2013): simulated the self-consistent
particle acceleration process with non-relativistic shock.

E/E‘sh

Self-generated Magnetic fields in the simulation box, =~ Downstream ion energy spectrum at different times
(D.Caprioli & A. Spitkovsky 2013) (D.Caprioli & A. Spitkovsky 2013)



summary:

* Cosmic Rays are high energy extraterrestrial particles and important
in astrophysics.

* Diffusion shock acceleration can explain the power-law properties of
CRs energy spectrum.

* Most CRs are thought to be come from SNRs, and there have been
some evidence.

* Present numeric simulations can have a self-consistent acceleration
process.
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