M- σ Relation

Qiufan Lin

• Main References

- Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13
- Ferrarese, L., & Merritt, D., 2000, ApJ, 539, L9
- Kormendy, J., & Ho, L. C., 2013, ARAA, 51, 511

- Other correlations: M Lbulge, M Mbulge
- Conditions/Extensions
- Interpretations (Coevolution / BH Feedback mechanisms?)

• First proposed by Gebhardt et al. (2000) and Ferrarese & Merritt (2000)

Gebhardt et al. (2000)

Implications:

- Tight correlation between MBH and σ over 3 orders of magnitude
- Approach to BH mass measurement
- Link between different scales
- Fundamentality: Correlation -> Close BH-host coevolution?

• Galaxy Classification

• Ellipticals / Classical Bulges

- Ellipticals = Classical Bulges <- Major Mergers
- Tight Correlation between BHs and ellipticals / classical bulges

• Pseudobulges

- Undermassive BHs
- Secular, episodic, stochastic BH feeding
- Weak/No Correlation between BHs and pseudobulges

• Disks

• Weak/No Correlation between BHs and disks

• Core / Coreless Ellipticals

- Lauer et al. 2005 V
- ACS V
- + CFHT Cassegrain V
- SDSS V

а

- Bender et al. 2008 V
- Peletier et al. 1990 V
- A Kim, Lee & Geisler 2000 V
- Caon, Capaccioli & D'Onofrio 1994 B
- McDonald 0.8 m V
- Sérsic fit (3.5" to 877")

- PC F814W
- ACS V

b

- ACS g major-axis cut
- + CFHT Cassegrain V
- Bender et al. 2008 V
- CFH12K R major-axis cut
- McDonald 0.8 m V ellipse fit
- △ McDonald 0.8 m V major-axis cut
- Sérsic fit (9.6" to 263")

• Core / Coreless Ellipticals

- Core ellipticals -> light deficit at center
 - Produced by dry (gas-poor, dissipationless) mergers
 - BH scouring: BH binary decays by flinging stars away
 - Mcrit quenching: When MBH > Mcrit, X-ray and radio sources keep gas in hot phase
- Coreless ellipticals -> light excess at center
 - Produced by wet (gas-rich, dissipative) mergers
 - Sufficient cold gas to fuel starbursts

- Core / Coreless Ellipticals
 - Core ellipticals: Large, High-mass BHs
 - Core ellipticals: Correlation holds for luminosity, but it is "saturated" for σ

- Core / Coreless Ellipticals
 - Core ellipticals: Small variations in σ

Kormendy & Ho (2013)

- Take-away Points
 - Pseudobulges / bulgeless galaxies
 - Small BHs
 - Secular, episodic, stochastic BH feeding
 - Weak/No M σ relation or other BH-host correlations
 - Coreless Ellipticals / Classical Bulges
 - Large BHs
 - Wet major mergers
 - Strong $M-\sigma$ relation and other BH-host correlations
 - Core Ellipticals
 - Largest BHs
 - Dry major mergers
 - Strong $M-\sigma$ relation and other BH-host correlations, but deviation is present
 - M σ Relation: suggestive of BH feedback, but less compelling than expected

- Extended Picture: Is Dark Matter More Fundamental?
 - Correlation between BHs and DM only for ellipticals / classical bulges
 - DM is not the underlying determinant of the relation

Kormendy & Bender (2011); Kormendy & Ho (2013)

- Extended Picture: Besides BH feedback, is there another mechanism?
 - Weak/No Correlation between BHs and pseudobulges

• Extended Picture: Besides BH feedback, is there another mechanism?

• Scatter decreases as MBH increases

• Extended Picture: Mass Averaging

Jahnke & Maccio (2011); Kormendy & Ho (2013)

• Extended Picture: Downsizing

- Massive BHs outpaced bulge growth
 - Primarily with high-z ellipticals / classical bulges
- Low-mass BHs with large variations
 - Primarily with low-z bulgeless galaxies / pseudobulges

- Extended Picture: Outliers
 - Mergers in progress $(z \sim 0)$: Low-mass BHs

Kormendy & Ho (2013)

• Interpretations

Ingredients:

- Observational facts: correlations (or not), outliers, deviations
- Two mechanisms: BH feedback & mass averaging

Regimes of BH-host coevolution (or not):

- Coreless Ellipticals / Classical Bulges
 - Large BHs; Mainly $z \sim 2-4$
 - Wet major mergers: concurrent BH feeding and star formation
 - Global BH feedback: BH-host coevolution engineers $M \sigma$ relation
- Core Ellipticals
 - Largest BHs
 - Dry major mergers: BH feedback plays a negative role
 - Inherit feedback effects from progenitor galaxies, but deviate from $M-\sigma$ relation

• Interpretations

Regimes of BH-host coevolution (or not):

- Pseudobulges / bulgeless galaxies
 - Small BHs; Mainly $z \sim 0$
 - Too little energy to affect the host
 - Local BH feedback: No coevolution
- Coevolution era has largely ended at $z \sim 0$
 - Gas fractions become small
 - Most mergers only involve modest star formation and BH growth
 - BH-host correlations dilute
- Mass Averaging
 - Help regulate BH-host correlations for all BH masses
 - Reduce scatters in BH-host correlations

- Summary
 - BHs correlate differently with different galaxy component
 - ✓: Ellipticals / Classical bulges
 - X : Disks / Pseudobulges / DM halos
 - Buildup of BH-host correlations
 - BH feedback / BH-host coevolution
 - Mass averaging through merger processes
 - Evidence of coevolution is not as compelling as expected
 - Relative importance of BH feedback and mass averaging is unknown
 - The picture has been further extended and enriched