Hitomi satellite / XARM

Speaker : Y. Zhou Advisor : H. Feng, W. Cui 2018/03/09

System Overview [1][2]

Soft X-ray spectrometer [12]

Soft X-ray spectrometer [12]

Traditional ionization detector

(CCD, proportional counter, Scintillation detector...)

- Counting the number of ionized particles
- Limited to statistical fluctuations
- $\Delta E \sim 150 \text{ eV}$ for typical CCD

Micro-calorimeter

- Measuring the total heat
- Could be more precise in theory
- $\Delta E \sim 5 \ eV$ for Hitomi SXS
- **Better energy resolution**

Soft X-ray spectrometer [12]

Grating spectroscopy

- Low quantum efficiency
- **Dispersive**

- $\Delta E/E$ constant
- **Energy resolution depends on source** angular size

Micro-calorimeter spectroscopy

- 100% quantum efficiency
- **Non-dispersive**
- ΔE constant
- Energy resolution is not affected by X-• ray incident direction

Better energy resolution for extended source

Thermometer

Absorber

Heat Capacity, C

Hitomi Science -- SXS

(Kitayama et al, 2014)

Turbulence and bulk motion in galaxy cluster, SNR, winds ...

Hitomi Science -- SXS

7

Energy [keV]

Compton shoulder : X-ray reflection in AGN torus, GC molecular clouds, WD surface ...

counts s⁻¹ keV⁻¹

10⁻¹

10⁻²

10⁻³

5

8

Hitomi Science

Near Chandrasekhar–mass White dwarf : gravitational shift of the 6.4 keV line

SNR Progenitor: chemical abundance

Geometry and super-Eddington condition in black holes

Hot Interstellar and Circumgalactic Gas : distinguish between 'Local hot Bubble' and SWCX (solar wind charge exchange)xosphere

Chemical Evolution in High z Universe

Galactic center region: the origin and dynamics of plasma • S0-2 • S0-102

1995-2012

Galactic Center Group

Case Study : Perseus Cluster

- Gas dynamics of the ICM
- AGN Feedback
- Cosmology Evolution
- Dark Matter Model

Background [10]

Worries about weighing cluster mass :

Assuming thermal equilibrium

Evidence for AGN feedback :

- Bubbles structure
- Expecting strong turbulence in the ICM ---not in thermal equilibrium

Perseus cluster is the best target for this study !

(Kitayama et al, 2014)

The Measurement [14] [15]

- Turbulence broadening : assumed to be the same, not depend on ion mass
- Thermal broadening : depends on ion mass and Tion , assuming the same Tion

Gas dynamics of the ICM [10]

Previously :

Only upper limits were obtained with XMM-Newton: < 600 km/s @ 68% confidence level

Hitomi observation :

- 164 +/- 10 km/s
- surprisingly lower than expected

The Interpretation

- The Perseus ICM is almost quiescent !
 - Turbulence energy is only 4% of the thermodynamic energy
- Probably don't need correction for cluster mass measurement
- The AGN feedback is 'gentle' [16][15]

(Erwin T. Lau et al, 2017)

• Leaving open question :

What is keeping the cluster's widespread gas hot ?

(AHARONIAN et al, 2017)

Х

Bulk Motion : Velocity Shear in Map [15]

- Mild AGN feedback
- cosmic accretion, such as mergers

More application : the origin of 3.5 keV line [19]

 Unkown emission line feature seen in stacked sample of 73 clusters (Bulbul et al. 2014)

Possible explanations:

- K XVIII line
 - Require cold gas and unphysically high K abundances
- Sulphur charge exchange
 - Known lines in unfamiliar ratios
 - Cold neutral gas interact with hot fully ionized gas
- Decaying Sterile Neutrino of a mass of ~7 keV → ~3.5 keV line

(AHARONIAN et al, 2017)

First sight of SXS spectrum :

No evidence of 3.5 keV line [20] Inconsistent with Chandra and XMM-Newton observation • rule out the K emission line

(Joseph P. Conlon et al, 2017)

Consistency with Chandra Data [21]

- The AGN contributes to Hitomi spectrum
- Not for Chandra, XMM-Newton

(Joseph P. Conlon et al, 2017)

Flourescent Dark Matter [21]

Hitomi spectrum :

 Probably support the flourescent dark matter model better than decaying or annihilating dark matter

X-ray Astronomy Recovery Mission

 The Hitomi satellite lost control in the spin rate due multiple incidents with the attitude control system and breakup ---- before the formal operation.

Instrument			Hitomi	XARM
Soft X-ray Spectrometer	SXS	X-ray micro calorimeter	Ο	Ο
Soft X-ray Imager	SXI	X-ray CCD	Ο	Ο
Hard X-ray Imager	HXI	Si/CdTe cross- strips	Ο	Not Onboard
Soft Gamma- ray Detector	SGD	Si/CdTe Compton camera	Ο	Not Onboard

References

- [1] Astro-H instrument, <u>https://arxiv.org/abs/1412.1356</u>
- [2] Hitomi X-ray Astronomy Satellite: Power of High-Resolution Spectroscopy, <u>http://adsabs.harvard.edu/abs/2017IAUS..322..1970</u>
- [3] Astro-H star, <u>https://arxiv.org/abs/1412.1162</u>
- [4] Astro-H white dwarf, <u>https://arxiv.org/abs/1412.1163</u>
- [5] Astro-H SNR, <u>https://arxiv.org/abs/1412.1169</u>, <u>https://arxiv.org/abs/1412.1166</u>
- [6] Astro-H galactic center, <u>https://arxiv.org/abs/1412.1170</u>
- [7] Astro-H neutron star, https://arxiv.org/abs/1412.1165, https://arxiv.org/abs/1412.1164
- [8] Astro-H black hole, <u>https://arxiv.org/abs/1412.1173</u>
- [9] Astro-H AGN, https://arxiv.org/abs/1412.1177 , https://arxiv.org/abs/1412.1171
- [10] Astro-H galaxy cluster, https://arxiv.org/abs/1412.1174, https://arxiv.org/abs/1412.1176
- [11] Astro-H new spectral feature, <u>https://arxiv.org/abs/1412.1172</u>
- [12] Dan McCammon, microcalorimeter, https://arxiv.org/abs/physics/0503045
- [13] Hitomi-SXS-cooling-system, http://adsabs.harvard.edu/abs/2010SPIE.7732E..3HF
- [14] nature_quiescent-intracluster-medium-core-perseus-cluster, http://adsabs.harvard.edu/abs/2016Natur.535..117H
- [15] atmospheric-gas-dynamics-in-the-Perseus-cluster-Hitomi, http://adsabs.harvard.edu/abs/2017arXiv171100240H
- [16] physics-origin-of-gas-motions-in-galaxy-cluster-cores_Lau_2017, http://adsabs.harvard.edu/abs/2017ApJ...849...54L
- [17] Do-sound-wave-transport-AGN-energy-in-perseus-cluster, http://adsabs.harvard.edu/abs/2017MNRAS.464L...1F
- [18] Hitomi-perseus-support-heating-by-mixing, http://adsabs.harvard.edu/abs/2017MNRAS.466L..39H, http://adsabs.harvard.edu/abs/2017MNRAS.466L..39H, http://adsabs.harvard.edu/abs/2017MNRAS.466L..39H, http://adsabs.harvard.edu/abs/2017MNRAS.466L..39H, http://adsabs.harvard.edu/abs/2018ApJ...853..180Z
- [19] 3.55keV-line_JC_OxfordLunch , Bulbul et al 2014, Boyarsky et al 2014
- [20] Hitomi-constraints-on-the-3.5keV-line-perseus-galaxy-cluster, http://adsabs.harvard.edu/abs/2017ApJ...837L..15A
- [21] consistency-hitomi_xmm_chandra-3.5keV_Perseus_Joseph_2017, http://adsabs.harvard.edu/abs/2017PhRvD..96l3009C
- [22] Cosmic ray heating in cool core clusters, <u>http://adsabs.harvard.edu/abs/2017MNRAS.467.1478J</u>

Summary

- Unprecedented energy resolution (< 7 eV) in soft X-ray band
- Calorimeter : better in energy resolution, especially for extended source
- New spectra features to resolve
- Perseus cluster : AGN feedback mechanism, cosmology evolution and dark matter model.
- Hitomi was lost after one month after launch
- X-ray Astronomy Recovery Mission on next mission