Athena

Advanced Telescope for High Energy Astrophysics

Presented by Ding Jiao Apr. 13th, 2018

Outline

Payload

Payload

X-ray telescope

X-ray Integral Field Unit (X-IFU)

Wide Field Imager (WFI)

Mirror

The Silicon Pore Optics technology (SPO)

- Si wafer: 60 mm wide
- Rectangular grooves
- Thin wedge of material: inplane focus
- High-Z material (e.g. Iridium or Gold)
- Curvature: the out-of-plane focusing

(Willingale, R., Pareschi, G., Christensen, F., den Herder, J. W. 2013)

1 Mirror

The Silicon Pore Optics technology (SPO)

(Willingale, R., Pareschi, G., Christensen, F., den Herder, J. W. 2013)

Performance

Mirror

- **Diameter:** • 40 arc minutes
- **Fixed focal length:** ٠ 12 m
- Collecting area: ٠ 2 m^2 at 1 keV
- Angular resolution : • 5 arc seconds HEW

Chandra

2

Photon Starvation

XMM

EXOSAT

10

angular resolution arc seconds

Low Sensitivity

100

Parameter	Requirements
Energy range	0.3-12 keV
Energy resolution: E < 7 keV	2.5 eV (250 x 250 µm TES pixel)
Energy resolution: E > 7 keV	$E/\Delta E = 2800$
Field of View	5' (diameter) (3840 TES)
Detector quantum efficiency @ 1 keV	>60%
Detector quantum efficiency @ 7 keV	>70%
Gain error (RMS)	0.4 eV
Count rate capability – faint source	1 mCrab (>80% high-resolution events)
Count rate capability – bright source	1 Crab (>30% low-resolution events)
Time resolution	10 µs
Non X-ray background	< 5 10 ⁻³ counts/s/cm ² /keV

Effective area : 1.5m^2 @1 keV

(Barret, D., den Herder, J. W., Piro, L., et al. 2013)

Readout

SQUID (superconducting quantum interference device)

Anticoincidence

- screen the particle background
- 4 TES-array + cryogenic SQUID
 + warm electronics
- rejection rate: > 98% energy threshold: 20 keV rise time: < 30 μs.

Baffle

(Rau, A., Meidinger, N., Nandra, K., et al. 2013)

WFI

Parameter	Characteristic
Energy Range	0.1-15 keV
Field of View	ca. 40' x 40' (baseline)
	ca. 50' x 50' (goal)
Array Format	Central chip: 256 x 256 pixel
	Outer chips: 4x 448 x 640 pixel (baseline)
	4x 576 x 768 pixel (goal)
Pixel Size	Central chip: 100 x 100 µm ² (1.8")
	Outer chips: 130 x 130 µm ² (2.3")
Angular Resolution (onaxis)	<5 arcsec (oversampling by 2.8)
Quantum efficiency (incl.	277 eV: 24%
optical	1 keV: 87%
blocking filter)	10 keV: 96%
Energy Resolution	$\Delta E < 150 \text{ eV}$ (FWHM) @ 6 keV
Readout rate	Central chip: 7800 fps
	Outer chips: 2200 fps
Fast timing, count rate capability	8 µs in window mode
	0.5 Crab > 88 % throughput, <3 % pile-up
	1 Crab > 80 % throughput, <5 % pile-up
Particle Background at L2	3 x 10 ⁻⁴ cnt/cm ² /keV/s

Effective area: ~1.7 m^2 at 1 keV

DEPFET (DEpleted P-channel Field Effect Transistor)

DEPFET (DEpleted P-channel Field Effect Transistor)

Focal Plane Design

⁽Rau, A., Meidinger, N., Nandra, K., et al. 2013)

Science Theme The Hot And Energetic Universe

The Hot Universe: how does ordinary matter assemble into the large scale structures that we see today?

The Energetic Universe: how do black holes grow and influence the Universe ?

1 The Hot Universe

The chemical history of hot baryons

 X-IFU X-ray spectroscopy of groups and clusters at different redshifts

 Determine where metals are produced in clusters

Abundance measurements for a typical cluster of galaxies (AS 1101, 100 ks)

(Nandra, K., Barret, D., Barcons, X., et al. 2013)

2 The Energetic Universe

Formation and Early Growth of Supermassive Black Holes

- Discovery space
- Break through to the high redshift Universe for the first time
- Survey power: a factor ~100 better

(Nandra, K., Barret, D., Barcons, X., et al. 2013)

Advantages

High-energy observational capabilities

Superior wide field X-ray imaging capability High-resolution spectroscopic imaging capability High time resolution and count-rate capability

Advantages

Weak spectral line detection

Number of sources

Grasp

The product of effective area at 1 keV (10 keV for NuSTAR) and the instrument field of view

(Nandra, K., Barret, D., Barcons, X., et al. 2013)

Reference

- [1] Nandra, K., Barret, D., Barcons, X., et al. 2013, arXiv:1306.2307
- [2] Barret, D., den Herder, J. W., Piro, L., et al. 2013, arXiv:1308.6784
- [3] Rau, A., Meidinger, N., Nandra, K., et al. 2013, arXiv:1308.6785
- [4] Willingale, R., Pareschi, G., Christensen, F., den Herder, J. W. 2013, arXiv:1307.1709

