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• Gather a huge amount of 
data and determine long term 
variations of the CRs fluxes 
and composition


• Improve understanding of the 
interstellar propagation and of 
the mechanisms at the 
origins of CRs.


• Accurately understanding 
cosmic radiation is required 
for manned interplanetary 
flight



AMS Science
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Antimatter        Dark matter 

Strangelets        Cosmic rays composition and fluxes

“THE MOST EXCITING OBJECTIVE OF AMS IS TO PROBE THE UNKNOWN; TO 
SEARCH FOR PHENOMENA WHICH EXIST IN NATURE THAT WE HAVE NOT YET 
IMAGINED NOR HAD THE TOOLS TO DISCOVER” 

“NEVER IN THE HISTORY OF SCIENCE WE WERE SO AWARE OF OUR IGNORANCE: 
WE KNOW THAT WE DO NOT KNOW ANYTHING ABOUT WHAT MAKES 95% OF OUR 
UNIVERSE” 
                                                                                      —  S.C.C. Ting
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What is AMS ?
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• Alpha Magnetic Spectrometer


• Particle detector mounted on 
International Space Station (ISS)


• Measure: matter and antimatter 
particles in cosmic rays


• Goal: searching for antimatter, 
dark matter while performing 
precision measurements of 
cosmic rays composition and 
flux.

 S.C.C. Ting

www.ams-02.org



AMS-02 Schedule
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STS: Space Transportation System

• Suppose to launch in 2005. Postponed.


• Thermal vacuum, electromagnetic 
compatibility and electromagnetic 
interference testing at ESTEC (Netherlands) and 
underwent final alignment at CERN since 16 
February 2010.


• Delivered to  Kennedy Space Center in Florida 
on August 26 2010.


• The launch of Space Shuttle 
Endeavour flight STS-134 carrying AMS-02 
took place on 16 May 2011.


• The spectrometer was installed on 19 May 2011.

https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Kennedy_Space_Center
https://en.wikipedia.org/wiki/Florida
https://en.wikipedia.org/wiki/Space_Shuttle_Endeavour
https://en.wikipedia.org/wiki/STS-134
https://en.wikipedia.org/wiki/Spectrometer
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Detector AMS-02
Weight 8500 kg
Volume 64 m3

Power 2.5 kW
Data downlink average 9 Mbps

Magnetic material 1200 kg of Neodymium alloy 
(Nd2Fe14B)

Magnetic field intensity 0.15 Tesla (4 times stronger than 
the Earth field)

Subsystem 15 among particle detectors and 
supporting subsystems

Launch 16th May 2011, 08:56 am EDT

Mission duration through the lifetime of the ISS, 
until 2020 or longer 

Construction 1999-2010

Cost $ 1.5~2 billion (estimated)
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AMS-01
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•The subdetectors installed on AMS-01 were:


•Silicon Detector, to measure the sign of the charge 
and the momentum of the charged particles


•Time of Flight, to measure the velocity of the charged 
particles and to provide the trigger of the experiment


•An Anticounter system, to veto particles traversing 
the spectrometer but crossing the magnet walls


•A threshold Cerenkov detector, to separate low 
velocity from high velocity particles

Goal:  
1. test spectrometer design principles  
2. gain experience under real space 
flight condition



AMS-01 status
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Main difference from AMS-02:
No effort was made to select especially high energy e± or low 
energy antiprotons.

Main result: 
By not detecting any antihelium the AMS-01 established an upper 
limit of 1.1×10−6 for the antihelium to helium flux ratio and proved 
that the detector concept worked in space

Others:
This shuttle mission was the last shuttle flight to the Mir Space Station

https://en.wikipedia.org/wiki/Antihelium#Antihelium
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Mir
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✦ transition radiation detector (TRD)

✦ silicon tracker (Tracker)

✦ superconducting magnet 

✦ 2 time-of-flight counters (ToF)

✦ 2 star tracker cameras 

✦ ring-imaging Cerenkov detector 

(RICH)

✦ electromagnetic calorimeter (ECAL)

✦ anti-coincidence veto counter (ACC)

✦ Other support systems 

http://cyclo.mit.edu/ams/trd.html
http://cyclo.mit.edu/ams/tracker.html
http://cyclo.mit.edu/ams/magnet.html
http://cyclo.mit.edu/ams/tof.html
http://cyclo.mit.edu/ams/startracker.html
http://cyclo.mit.edu/ams/rich.html
http://cyclo.mit.edu/ams/ecal.html
http://cyclo.mit.edu/ams/acc.html


Permanent Magnetic &  
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The 1997 and 2010 measurements 
coincide within 1%

Acceleration test

Superconducting 
Magnetic
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Positron fraction: ratio of the positron flux to the 
combined flux of positrons and electrons 

• Time independent
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Positron fraction: ratio of the positron flux to the 
combined flux of positrons and electrons 

• Time independent


• No anisotropy
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physics phenomena: 
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positrons originating 
from the annihilation 
of dark matter 
particles in space

AMS-02 Collaboration, 2013
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AMS Results  
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An antihelium 
candidate



AMS Results 
— about solar physics
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Summary
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• The scientific goal of AMS is to study the fundamental problems 
in our Universe (Antimatter, Dark matter, Strangelets, Cosmic 
rays).


• The “state-of-the-art” design is shown as a sophisticated and 
amazing scientific detector on ISS.


• Many precise measurement of different particles in space has 
been done and find important features from those spectrum.


• The excess of positron is consistent with the positrons originating 
from the annihilation of dark matter particles in space. (Though 
not yet sufficiently conclusive to rule out other explanations) And 
other results from AMS give hints to new physics as well.
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• On top of AMS, a transition radiation 
detector tells us the velocities the highest-energy 
particles. 

• The silicon tracker follows a particle's path 
through the instrument. 

• A superconducting magnet makes the particle's 
path curve. 

• Two time-of-flight counters tell us lower-energy 
particles' speeds. 

• Two star tracker cameras measure AMS's 
orientation in space. 

• Underneath AMS, a ring-imaging Cerenkov 
detector makes an extremely-accurate velocity 
measurement for fast particles. 

• Some particles crash violently into 
the electromagnetic calorimeter, which measures 
their energy and type. 

• An anti-coincidence veto counter notices stray 
particles sneaking through AMS sideways.

http://cyclo.mit.edu/ams/trd.html
http://cyclo.mit.edu/ams/trd.html
http://cyclo.mit.edu/ams/tracker.html
http://cyclo.mit.edu/ams/magnet.html
http://cyclo.mit.edu/ams/tof.html
http://cyclo.mit.edu/ams/startracker.html
http://cyclo.mit.edu/ams/rich.html
http://cyclo.mit.edu/ams/rich.html
http://cyclo.mit.edu/ams/ecal.html
http://cyclo.mit.edu/ams/acc.html
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low



Time of Flight(ToF)
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A pair a charged particles 
have a flight of 1m

When v -> c,



AMS results 
—2018
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Rigidity:  
R = p/q


