Laboratory experiments of the MRI

Xiao-Sheng Zhao

Mar. 29th, 2019

Outline

• Local stability analysis

- Experiments
- Taylor-Couette flow
- Standard MRI(SMRI)
- Helical MRI (HMRI)
- Non-magnetic flow
- Magnetocoriolis waves
- Summary

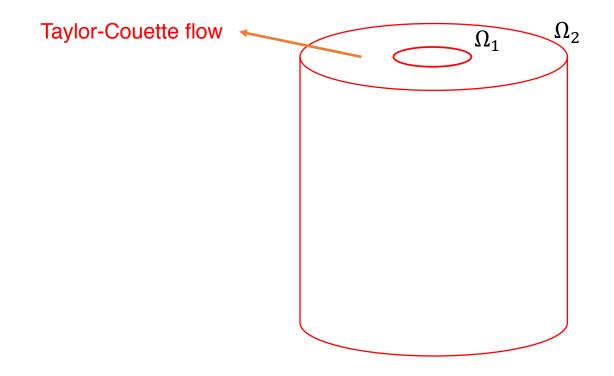
Taylor-Couette flow

Why we need experiments?—To be a testbed for MHD codes

How? — flow: conductivity、 temperature、 price... vessel, detection...

Taylor-Couette flow:

consists of a viscous fluid (metal) confined in the gap between two rotating cylinders.



Dynamics of liquid metals—Incompressible and dissipative MHD equations,

$$\begin{array}{rcl} 0 & = & \boldsymbol{\nabla} \cdot \boldsymbol{V} \\ 0 & = & \boldsymbol{\nabla} \cdot \boldsymbol{B} \\ \frac{\partial \boldsymbol{B}}{\partial t} & = & \boldsymbol{\nabla} \times (\boldsymbol{V} \times \boldsymbol{B}) + \eta \boldsymbol{\nabla}^2 \boldsymbol{B} \\ \frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \boldsymbol{\nabla}) \boldsymbol{V} & = & \frac{(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{B}}{\mu_0 \rho} - \frac{1}{\rho} \boldsymbol{\nabla} \left(p + \frac{\boldsymbol{B}^2}{2\mu_0} \right) \\ + \nu \boldsymbol{\nabla}^2 \boldsymbol{V}, \end{array}$$

The equilibrium quantities: $B_0 = (0, 0, B)$ $V_0 = (0, r\Omega, 0)$ The balance of forces: $\partial p_0 / \partial z = 0$ $\partial p_0 / \partial r = \rho r \Omega^2$

WKBJ methods (Goodman & Ji 2001)

The perturbations: $B_1 = (B_r, B_\theta, B_z)$ $V_1 = (V_r, V_\theta, V_z)$ All proportional to: $\exp(\gamma t - ik_z z - ik_r r)$ γ : growth rate

The linearized equations of motion:

$$0 = k_r V_r + k_z V_z$$

$$0 = k_r B_r + k_z B_z$$

$$\gamma B_r = -ik_z B V_r - \eta k^2 B_r$$

$$\gamma B_\theta = -ik_z B V_\theta + \frac{\partial \Omega}{\partial \ln r} B_r - \eta k^2 B_\theta$$

$$\gamma V_r - 2\Omega V_\theta = -i \frac{k_z B}{\mu_0 \rho} B_r + i \frac{k_r}{\rho} p_1 + i \frac{k_r B}{\mu_0 \rho} B_z - \nu k^2 V_r$$

$$\gamma V_\theta + \frac{\kappa^2}{2\Omega} V_r = -i \frac{k_z B}{\mu_0 \rho} B_\theta - \nu k^2 V_\theta$$

$$\gamma V_z = i \frac{k_z}{\rho} p_1 - \nu k^2 V_z$$

Dispersion relation:

$$[(\gamma + \nu k^2)(\gamma + \eta k^2) + (k_z V_A)^2]^2 \frac{k^2}{k_z^2} + \kappa^2 (\gamma + \eta k^2)^2 + \frac{\partial \Omega^2}{\partial \ln r} (k_z V_A)^2 = 0.$$

Alfvénic speed: $V_A \equiv B/\sqrt{\mu_0 \rho}$

Three relevant frequencies:

resistive
$$\omega_\eta \stackrel{'}{\equiv} \eta k^2$$

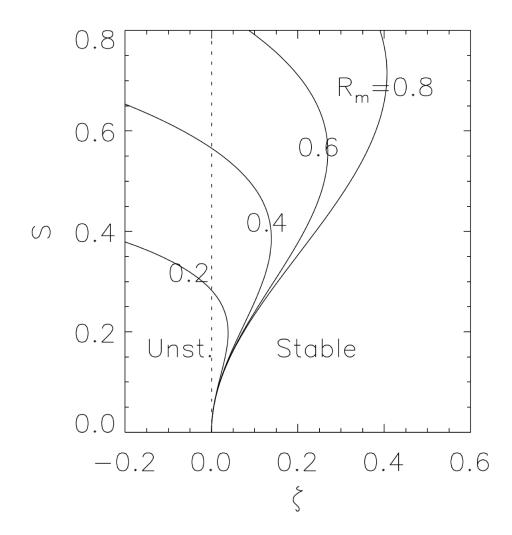
viscous $\omega_
u \equiv
u k^2$
Alfvénic $\omega_A \equiv |k_z V_A|$

Four dimensionless parameters:

Condition for stability: $(P_{\rm m} + S^2)^2 (1 + \epsilon^2) + 2\zeta R_{\rm m}^2 - 2(2 - \zeta) R_{\rm m}^2 S^2 \ge 0, \qquad \epsilon \equiv h/(r_2 - r_1)$

Small
$$P_m$$
 limit: $\zeta \ge \frac{2S^2}{S^2 + 1} - \frac{S^4(1 + \epsilon^2)}{2R_m^2(S^2 + 1)}$

Stability diagram



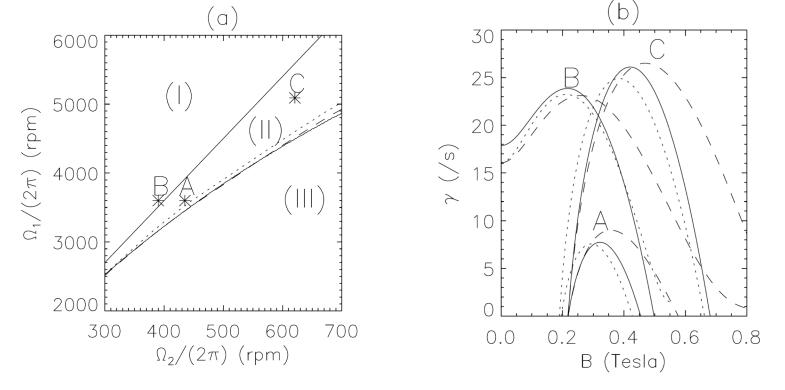


Table 1. Parameters for a gallium annulus with $r_1 = 0.05$ m, $r_2 = 0.15$ m, and h = 0.1m.

point	$\Omega_1(\mathrm{rpm})$	$\Omega_2(\mathrm{rpm})$	$R_{ m m}$	ζ
А	3600.00	435.00	0.3319	0.06293
В	3600.00	390.00	0.3143	-0.01899
\mathbf{C}	5089.77	620.70	0.4715	0.06984
D		00000		

Local analysis

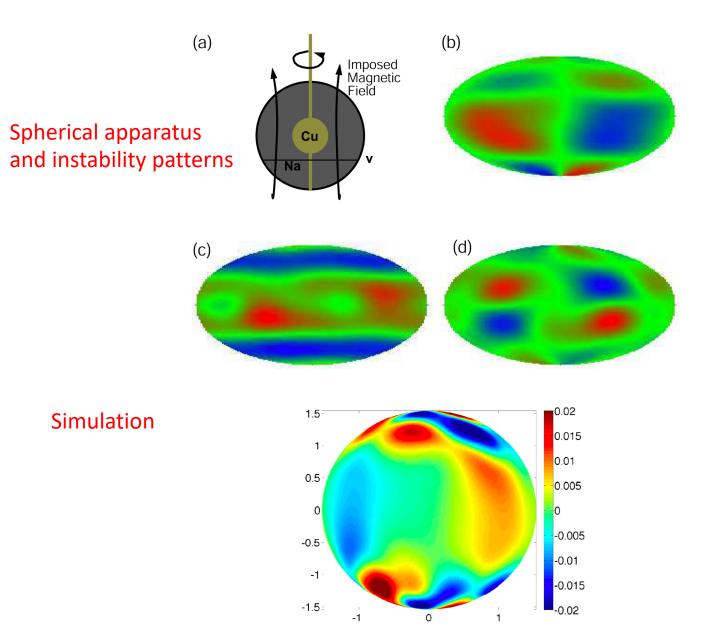
global analysis (Goodman & Ji 2001)

Practical issues: geometric optimization

periodic vertical boundary conditions

nonlinear hydrodynamical instability (Goodman & Ji 2001)

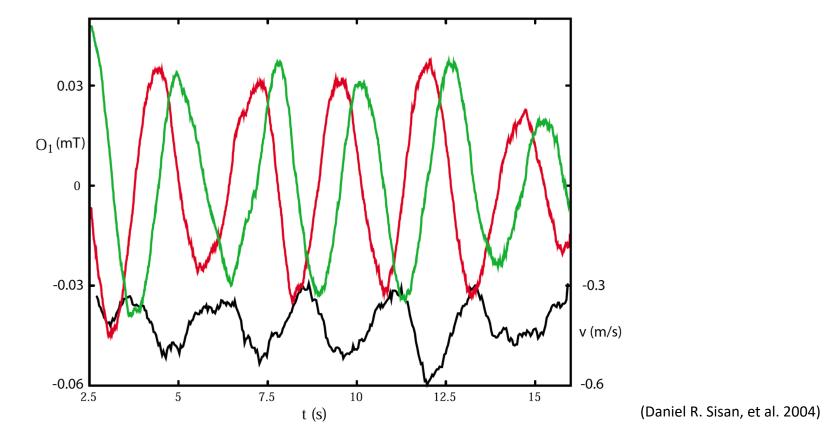
Standard MRI(SMRI)



(Daniel R. Sisan, et al. 2004)

(Christophe Gissinger, et al. 2011)

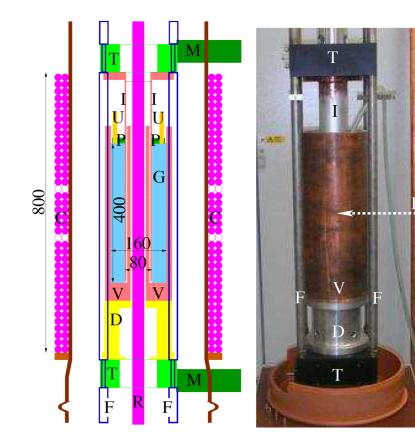
Standard MRI(SMRI)



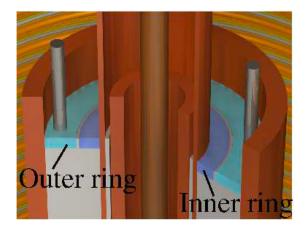
Coupled fluctuations in the velocity and induced magnetic fields.

Background hydrodynamic turbulence?

Helical MRI (HMRI)



(Frank Stefani, et al. 2006)

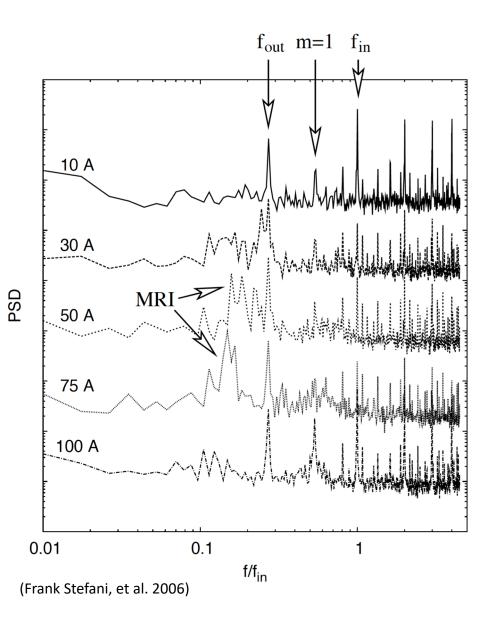


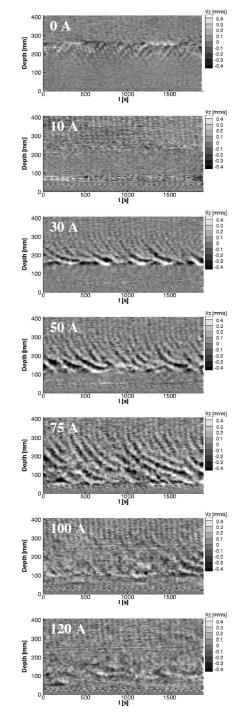
(Frank Stefani, et al. 2009)

Alloy GaInSn

Azimuthal magnetic field, MRI is then possible with far smaller Reynolds (Re)

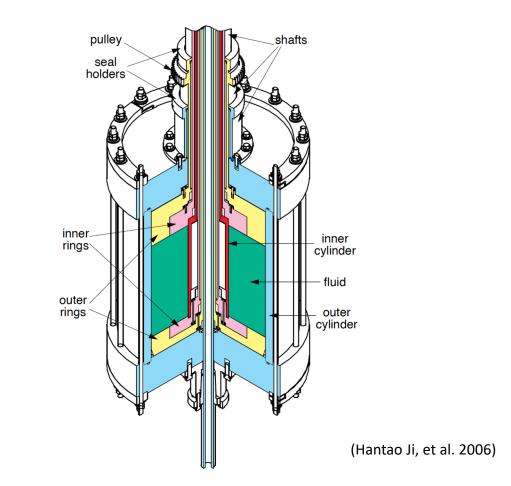
Helical MRI (HMRI)





Travelling waves

Non-magnetic flow



The MRI (other than hydrodynamic instabilities) appears to be the only plausible source of accretion disk turbulence.

Magnetocoriolis waves

MHD equations in a rotating frame:

Alfvénic wave(Lorentz forces) $(\omega - i\gamma_v)(\omega - i\gamma_\eta) - \omega_A^2 = 0$

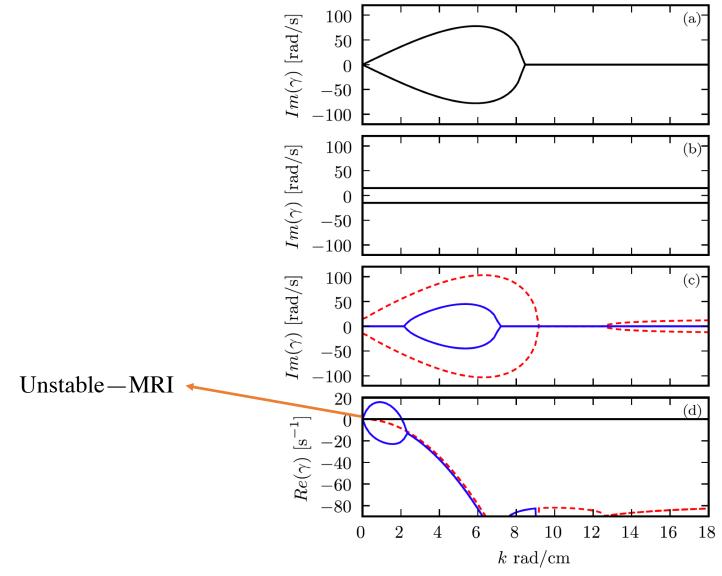
Magnetocoriolis waves-

Inertial waves(Coriolis forces) $(\omega - i\gamma_v)^2 + (2\Omega k_z/k)^2 = 0$

higher frequency fast wave

lower frequency slow wave

Magnetocoriolis waves



(M.D. Nornberg, et al. 2010)

Summary

- Preliminary experimental design can be done through Local (global) stability analysis.
- Standard MRI(SMRI) shows that Lorentz forces are key to the instability, but is affected by the hydrodynamical turbulence background.
- Helical MRI (HMRI) can produce characteristic travelling wave which is a main feature of MRI.
- It is magnetic field, rather than hydrodynamics, that sustains the angular momentum transport .
- Great debate: effects of the no-slip axial boundaries found in Taylor-Couette experiments which do not match the open stratified boundaries of accretion disks (Freja Nordsiek1, et al. 2014).