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Why do we want to know how particles get accelerated?
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A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated
and accelerated primarily in the interstellar space of the galaxy by collisions against moving mag-
metic fields. One of the features of the theory is that it yields naturally an inverse power law for the
spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straight-
forward way the heavy nuclei observed in the primary radiation.

Second-order acceleration mechanism:  not fast enoughl!
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What is shock?

Tycho's Supernova Remnant in x-rays.
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How does a particle ge1' accelerated?
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Number of particles staying in the acceleration region after one collision: N = Ny(1 ——)
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Non-relativistic particles

Strong shock

e . More general version
Relativistic particles



Power-law slope:
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Order of magnitude analysis:
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Limitation of Fermi acceleration mechanism

Cannot give us the efficiency of the energy conversion
Cannot explain the origin of turbulent magnetic field
Cannot explain the extreme high energy particles
Cannot explain how the particle get their energy initially
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1. Efficiency of the acceleration

; -1
10 ey
—_—=0 |
m—) = 20 f
[ 9=30 |
9 =45 {
9 =50 |
¥ =60 f
—9=80 |
h energy particlgs
P | L P ...I\ L L ....H:
107 10” 10° 10 10° 10’
E/Esh
L 1 - N
Upstream Downstream
15 ! T T T T T T —
' —— M= 5
M=10
- Significant energy transferred to high energy particles /oA M=30 |1
* Orientation of background magnetic field is critical & = M=50
* Strong shock can accelerate particles effectively 9
0 5
o
=
w 5t
0 L T A T S S SN NN T AN SN SN SN ST ST ST S ST TR S S SR S S S S F—  —
0 10 20 30 40 50 60 70 80
¥ (deg)

Caprioli D, Spitkovsky A. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency[J]. The Astrophysical Journal, 2014, 783(2): 91.



2. Back-reaction from the high energy particles

Since there are noticeable energy transferred to high energy particles,
does this modify the shock itself?
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High energy particles can modify the phase space property and magnetic field
The turbulent magnetic field could be much greater than the background



Summary

DSA provides us an efficient way to accelerate particles
DSA predicts a universal power-law energy distribution up to 1lel4 eV
DSA can convert the energy to high energy particles efficiently

High energy particles can induce the turbulent magnetic field to
accelerate themselves



