Special Topics in Theoretical Astrophysics (2019 Spring)

Fermi acceleration of particles

Kai Wang Advised by Prof. Xuening Bai **Why do we want to know how particles get accelerated?**

Fisk L A, Gloeckler G. Acceleration of galactic cosmic rays in the interstellar medium[J]. The Astrophysical Journal, 2011, 744(2): 127.

PHYSICAL REVIEW

VOLUME 75, NUMBER 8

On the Origin of the Cosmic Radiation

ENRICO FERMI Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received January 3, 1949)

A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated and accelerated primarily in the interstellar space of the galaxy by collisions against moving magmetic fields. One of the features of the theory is that it yields naturally an inverse power law for the spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straightforward way the heavy nuclei observed in the primary radiation.

Second-order acceleration mechanism: **not fast enough!**

1954

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

VOLUME 119

JANUARY 1954

NUMBER 1

GALACTIC MAGNETIC FIELDS AND THE ORIGIN OF COSMIC RADIATION*

E. FERMI Institute for Nuclear Studies, University of Chicago Received September 11, 1953

apply to the shock

first-order acceleration mechanism a.k.a. Diffusive Shock Acceleration(DSA)

Shock reference frame

What is shock? perturbation velocity ≫ sound speed

Mass conservation : $\rho_1 v_1 = \rho_2 v_2$

Energy conservation : ρ_1v_1 (1 2 $v_1^2 + w_1$) = $\rho_2 v_2$ (1 2 $v_2^2 + w_2$ Momentum conservation : $p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2$

> Mach number : $M_1 = U/c_1 = v_1/c_1$ Ratio of specific heat capacities : *γ*

$$
\frac{2\gamma M_1^2}{(\gamma+1)}
$$
\n
$$
\frac{(\gamma+1)}{(\gamma-1)}
$$
\n
$$
\frac{2\gamma(\gamma-1)M_1^2}{(\gamma+1)^2}
$$
\n
$$
\frac{(\gamma+1)^2}{(\gamma+1)^2}
$$

*p*2

=

=

=

*p*1

*ρ*2

*ρ*1

 T_{2}

*T*1

$$
\rho_2/\rho_1 = 4
$$

$$
v_1/v_2 = 4
$$

How does a particle get accelerated?

Conditions for the Pingpong to accelerate:

□ Two walls are getting closer ✔

 \blacksquare It is better to be elastic collision

$$
P_{\text{escape}} = \frac{N_{\text{escape}}}{N_{\text{left}}} = \frac{U}{c}
$$
\n
$$
P = 1 - P_{\text{escape}} = 1 - \frac{U}{c}
$$
\n
$$
\frac{dN_{\text{left}}}{dSdt} = \int_{\pi/2}^{\pi} \frac{1}{2} Nc \cos \theta \sin \theta d\theta = \frac{Nc}{4}
$$
\n
$$
\frac{dN_{\text{escape}}}{dSdt} = \frac{NU}{4}
$$

Energy of the particle after one collision: $E = E_0(1 +$ *U c*)

Number of particles staying in the acceleration region after one collision: $N = N_0(1 - \frac{U}{c})$ *c*)

After k collisions: $E = E_0 \left(1 + \frac{E_0}{E_0}\right)$ *U c*) *k* $N = N_0 \left(1 - \frac{U}{c}\right)$ *k*

Eliminating the k and using $U \ll c$

 $N(E)$ d E ∝ $E^{−2}$ d E

$$
f(p)dp \propto p^{-4}dp
$$

 $N(E)dE \propto E^{-1.5}dE$

Strong shock Relativistic particles

More general version

Nore strong shock Non-relativistic particles **Power-law slope:**

Simple leaky-box model:
$$
\frac{\partial N}{\partial t} = Q(E) - \frac{N(E)}{t_{\text{csc}}(E)}
$$

\nSteady-state: $\frac{\partial N}{\partial t} = 0 \Rightarrow N(E) = Q(E)t_{\text{csc}}(E)$
\nUsing $t_{\text{csc}} \propto E^{-0.6}$, $Q(E) \propto E^{-2}$
\n
$$
\frac{\sum_{\substack{50 \text{odd } t \to 0^{\text{odd } t \to 0^{\text{
$$

Limitation of Fermi acceleration mechanism

- 1. Cannot give us the efficiency of the energy conversion
- 2. Cannot explain the origin of turbulent magnetic field
- 3. Cannot explain the extreme high energy particles
- 4. Cannot explain how the particle get their energy initially
- 5. ……

1. Efficiency of the acceleration

Caprioli D, Spitkovsky A. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency[J]. The Astrophysical Journal, 2014, 783(2): 91.

 10

20

30

50

60

70

80

40

 ϑ (deg)

 0^\square

2. Back-reaction from the high energy particles

Since there are noticeable energy transferred to high energy particles, does this modify the shock itself?

❖ High energy particles can modify the phase space property and magnetic field

❖ The turbulent magnetic field could be much greater than the background

Summary

- ❖ DSA provides us an efficient way to accelerate particles
- ❖ DSA predicts a universal power-law energy distribution up to 1e14 eV
- ❖ DSA can convert the energy to high energy particles efficiently
- ❖ High energy particles can induce the turbulent magnetic field to accelerate themselves