Magnetic Reconnection and Plasmoid Instability

Tianjun Gan 2019.4.26 Supervised by Prof.Xuening Bai

Outline

- Introduction
- Therical model of plasmoid formation
- Simulation results of plasmoid chains and instability
- Summary

Solar flares and coronal mass ejection

Solar flares are large eruptions of electromagnetic radiation from the Sun lasting from minutes to hours.

Solar flares usually take place in active regions, which are areas on the Sun marked by the presence of strong magnetic fields.

Giovanelli, R. G., 1946: Nature 158, 81

Magnetic Reconnection

- A rapid rearrangement of magnetic field topology plasma phenomenon in which **oppositely** directed magnetic field lines are driven together, break and rejoin.
- A violent release of magnetically-stored energy and its conversion into heat and into non-thermal particle energy.

2D magnetic reconnection 3D magnetic reconnection

Therical models of magnetic reconnection

Sweet-Parker (SP) model current sheet : a steady-state channel of length L and thickness δ_{SP}

Parker, E.N. 1957 Sweet, P.A. 1958 Zweibel & Yamada (2009)

Therical models of magnetic reconnection

Sweet-Parker (SP) model

$$
S = \frac{LV_A}{\eta} \gg 1
$$

Solar coronal conditions: $S \sim 10^{12} - 10^{14}$ Earth's magnetotail: S $\sim 10^{15}$ – 10^{16} modern tokamak such as JET: S $\sim 10^6$ – 10^8

$$
\tau_{rec}\sim \tau_AS^{\frac{1}{2}}
$$

In solar-corona conditions: $\tau_A \approx 0.5s$

 $\tau_{rec} \approx 2$ months

observed duration: 15mins ~ several hrs

$$
\tau_{A}^{'} = \frac{L_{*}}{V_{A}}
$$

$$
\tau_{rec}^{'} \sim \tau_{A}^{'} S
$$

 τ_{rec} τ_{rec}

Petschek, H.E., 1964

Plasmoid instability: another way to explain the reconnection rate

plasmoid

Lorenzo Sironi & Anatoly Spitkovsky

$$
\partial_t \bm{B} + \bm{u} \cdot \bm{\nabla} \bm{B} = \bm{B} \cdot \bm{\nabla} \bm{u} - \bm{B} \bm{\nabla} \cdot \bm{u} + \eta \nabla^2 \bm{B}
$$

u: Velocity field B: magnetic field η: Resistivity

① Incompressibility and 2D current sheet

② Ignoring the flow vorticity

③ Only incorporating the key feature: linearly increasing Alfvenic outflow.

$$
u_x = -\Gamma_0 x
$$

$$
u_y = \Gamma_0 y
$$

Induction equation

$$
\partial_t \bm{B} + \bm{u} \cdot \bm{\nabla} \bm{B} = \bm{B} \cdot \bm{\nabla} \bm{u} - \bm{B} \bm{\nabla} \cdot \bm{u} + \eta \nabla^2 \bm{B}.
$$

Simple equilibrium solution
\n
$$
B_{0x} = 0 \t B_{0y} = B_{0y}(x)
$$
\n
$$
u_x = -\Gamma_0 x \t u_y = \Gamma_0 y
$$
\n
$$
u_y = \frac{B_0}{B_0} \t U_{cs}
$$

$$
B_{0y} = V_A f(\xi) \Big|_{\zeta}^2 \partial_x^2 B_{0y} + \partial_x \int_{\xi}^{f(\xi)} e^{-\xi^2/2} \int_0^{\xi} dz \, e^{z^2/2} \Big|_{0}^{2}
$$

① Constant inflows outside the sheet

② Inside and outside solution matched point: $x=x_0$

Alfven Speed	$V_0 = \frac{B_0}{\sqrt{\mu_0 \rho}} \equiv V_{A0}$
--------------	---

$$
B_{0y}(\pm x_0) \sim \pm V_A
$$

$$
B_{0y} = V_A f(\xi)
$$

Reduced MHD equation

$$
\partial_t \nabla^2_{\perp} \phi + \{\phi, \nabla^2_{\perp} \phi\} = \{\psi, \nabla^2_{\perp} \psi\},
$$

$$
\partial_t \psi + \{\phi, \psi\} = \eta \nabla^2_{\perp} \psi + E_0.
$$

$$
\{\phi,\psi\} \;\equiv\; \partial_x\phi\,\partial_y\psi \,-\, \partial_y\phi\,\partial_x\psi
$$

: Stream function of the inplane velocity ϕ

 ψ : Flux function of the magnetic field

$$
u = (-\partial_y \phi, \partial_x \phi)
$$

\n
$$
\phi_0 = \begin{cases} \n\Gamma_0 xy \text{ for } |x| < x_0 \\ \n\pm \Gamma_0 x_0 y \text{ for } |x| > x_0 \n\end{cases}
$$
\nSmall perturbations to the equilibrium

\nSolutions

\n
$$
\phi = \phi_0 + \delta \phi_{\zeta_0} \qquad \text{Solutions}
$$
\n
$$
\phi = \phi_0 + \delta \phi_{\zeta_0} \qquad \delta \phi(x, y, t) = \phi_1(x, t) \exp[i k(t) y]
$$
\n
$$
\psi = \psi_0 + \delta \psi \rightarrow x_0 \qquad \delta \psi(x, y, t) = \psi_1(x, t) \exp[i k(t) y]
$$

Where

 $\delta \psi(x, y, t) = \psi_1(x, t) exp[i k(t)y]$

$$
\partial_x \psi_0 = V_A f(\xi)
$$

 $k(t) = k_0 exp(-\Gamma_0 t)$

$$
\delta\phi(x, y, t) = \phi_1(x, t) \exp[i k(t) y]
$$

$$
\delta\psi(x, y, t) = \psi_1(x, t) \exp[i k(t) y]
$$

Exponentially solutions Reduced MHD equation

$$
\phi_1(x,t) = -i\Phi(x) \exp(\gamma t)
$$

 $\psi_1(x,t) = \Psi(x) \exp(\gamma t)$

$$
k(t) = k_0 \exp(-\Gamma_0 t)
$$

$$
\partial_t \nabla^2_{\perp} \phi + \{\phi, \nabla^2_{\perp} \phi\} = \{\psi, \nabla^2_{\perp} \psi\},
$$

$$
\partial_t \psi + \{\phi, \psi\} = \eta \nabla^2_{\perp} \psi + E_0.
$$

$$
\lambda(\Phi'' - \kappa^2 \epsilon^2 \Phi) = -f(\xi)(\Psi'' - \kappa^2 \epsilon^2 \Psi) + f''(\xi)\Psi,
$$

$$
\lambda \Psi - f(\xi)\Phi = \frac{1}{\kappa}(\Psi'' - \kappa^2 \epsilon^2 \Psi),
$$

$$
\kappa = k_0 V_A / \Gamma_0 = k_0 L_{CS} / 2
$$

\n
$$
\epsilon = (\eta \Gamma_0)^{\frac{1}{2}} / V_A = 2\delta_{CS} / L_{CS}
$$

\n
$$
\lambda = \gamma / \Gamma_0 \kappa
$$

$$
\lambda \Phi'' = -\alpha \xi \Psi'',
$$

\n
$$
\lambda \Psi - \alpha \xi \Phi = \frac{1}{\kappa} \Psi'',
$$

\n
$$
\kappa = k_0 V_A / \Gamma_0 = k_0 L_{CS} / 2
$$

\n
$$
\epsilon = (\eta \Gamma_0)^{\frac{1}{2}} / V_A = 2\delta_{CS} / L_{CS}
$$

\n
$$
\lambda = \gamma / \Gamma_0 \kappa
$$

Conclusion

(1) Instability growth rate

\n
$$
\gamma_{max}/\Gamma_0 \sim \epsilon^{-\frac{1}{2}}
$$
\nSuper-Alfvenically fast Stable current sheets with aspect ratios above some critical value can not exist.

\n(2) Plasmoids formed along the sheet

\n
$$
\kappa_{max} \sim \epsilon^{-\frac{3}{4}}
$$
\n(3) Inner layer width

\n
$$
\delta/\delta_{CS} \sim \epsilon^{\frac{1}{4}}
$$

2D MHD simulations of an SP reconnection layer uniform resistivity large S: 104<S<108

 (2) :S=10⁵, t=2.9t_A $\textbf{(3):}$ S=10⁶, t=2.6t₄

For S<=104, no plasmoids are observed.

For S>104, layer becomes unstable and plasmoids form with reconnection occurring at multiple X-points. Samtaney et al. , 2009

Samtaney et al. , 2009

 $\rm (1):$ S=10⁷, t=0.63t_A , $\rm (2):$ S=10⁷, t=0.96t_A , $\rm (3):$ S=10⁷, t=1.09t_A , $\rm (4):$ S=10⁷, t=1.27t_A

Samtaney et al. , 2009

Secondary plasmoid

(a-c): current sheet instability

(d-f): subsequent nonlinear evolution of the secondary island

A linear perturbation to the current sheet, with two X points forming at the ends of the sheet.

Spatial Structure of the Plasmoid Chain

Plasmoids' maximum number

$$
\kappa_{max} \sim \epsilon^{-\frac{3}{4}}
$$

Samtaney et al. , 2009

Summary

- Magnetic reconnection: oppositely directed magnetic field lines are driven together, break and rejoin, resulting in a conversion of magnetically-stored energy into plasma energy.
- Layer will become unstable and plasmoids will form if S is larger than $S_c(10^4)$.
- Instability growth rate
- Inner layer width
- Plasmoids formed along the sheet

$$
\kappa_{max} \sim \epsilon^{-\frac{3}{4}}
$$

• Plasmoids formation and instability can explain fast connection of high Lundquist number events.