Cosmic Magnetism

Yu Zhou 2019/05/17

Advised by : Xuening Bai, Yi Mao

Prevailing Magnetic field in the Universe

Measure the Magnetic Field by :

In presence of the magnetic field, the original energy level splits into three due to the different orientation of the electron spin.

Zeeman Effect

The polarization angle will rotate after passing through the medium with B-field.

In space, use pulsars as the polarized light source

Magnetic Field : Patterns and Orientations

M51 VLA+Effelsberg @ 6 cm (Fletcher & Beck 2004)

NGC 891 Radio Emission @ 3.6 cm (Krause, priv.comm)

How is the large scale magnetic field formed ?

Evidence Against the Primordial Origin

- Quantum fluctuation in electromagnetic field + inflation produced density perturbation Inflation-produced field will be diluted by the expansion to utterly negligible levels
- Plasma physics of the very early universe is only partially known.
 - Any magnetic field generated at a redshift z > 1E13 whose present scale is smaller than 1 kpc in the galaxy is undetectable.
- Some observational evidences of the chemical composition of the oldest stars in the galactic halo (Zweibel 2003) may suggest the existence of the pre-galactic magnetic field.
 - However, we still need some mechanism to keep the magnetic field from resistive decay !

Dynamo Theory : Magnetic field Generation and Amplification

(Kulsrud 2008)

$$E' = E + \frac{v \times B}{c} = \eta$$

 $\partial \boldsymbol{B}/\partial t = -c\nabla \times \boldsymbol{E}$

$$\nabla \times \boldsymbol{B} = 4\pi \boldsymbol{j}/c$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) + \frac{\eta c^2}{4\pi}$$

Dynamo Theory : Magnetic field Generation and Amplification

(Kulsrud 2008, Mean field dynamo theory)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B})$$

$$\boldsymbol{v} = \boldsymbol{U} + \delta \boldsymbol{v} \qquad \boldsymbol{B} = \bar{\boldsymbol{B}} + \delta \boldsymbol{B}$$
Mean motion Random walk
$$\frac{\partial \bar{\boldsymbol{B}}}{\partial t} = \nabla \times (\boldsymbol{U} \times \bar{\boldsymbol{B}}) + \nabla \times (\langle (\delta \boldsymbol{v} \times \delta \boldsymbol{B} \rangle)$$

- effective enough to amplify the field

decorrelation time of the turbulence motion $lpha = -rac{ au}{3} \langle v \cdot
abla imes v
angle /$ kinetic helicity / angular twist of the convective cell

$$\beta = \frac{\tau}{2} \langle v^2 \rangle.$$

turbulent resistivity : not real dissipation, but mixing term of random motion that smooths out the field

Assuming typical turbulent velocity as the same of the interstellar medium couldn't generate the alpha

• Much stronger turbulence due to supernova explosion and stellar winds (Ferriere's dynamo theory)

The Problems of the Mean Field Theory

- Vacuum boundary conditions
 - disc.
 - Hard to justify the flux removal
- Horizontally homogeneous interstellar medium assumed.
- Require some seed fields to function !

• Assuming the diffusion outside of the disc is much larger than that in the

Biermann Battery Effect as the Seed Field

(Zweibel 2013)

The motion of the electron fluids :

Electron-ion

frictional force

$$m\frac{\mathrm{d}\boldsymbol{v}_{\mathrm{e}}}{\mathrm{d}t} = -n_{\mathrm{e}}\boldsymbol{e}(\boldsymbol{E} + \boldsymbol{v}_{\mathrm{e}} \times \boldsymbol{B}) - \nabla p_{\mathrm{e}} + n_{\mathrm{e}}m\boldsymbol{g} + \boldsymbol{F}_{\mathrm{ei}}/$$

 $E + \frac{v_{\rm e} \times B}{c} = -\frac{\nabla p_{\rm e}}{n_{\rm e} e} \xrightarrow{\text{Start with B=0}} E = \frac{\nabla p_{\rm e}}{-n_{\rm e} e}$ If ne is constant (like a battery $\boldsymbol{E} + \frac{\boldsymbol{v} \times \boldsymbol{B}}{c} = -\frac{M}{e(1+\chi)} \frac{\nabla p}{\rho}$ without current flowing through) $\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) + \frac{\nabla p \times \nabla \rho}{\rho^2} \frac{Mc}{e(1+\chi)}$ Dynamo term Battery term (with helical motion in turbulence)

Biermann Battery Effect : Experimental Proof

(Stamper & Ripin 1975)

- The first direct observations of the spontaneous megagauss magnetic fields in laser produced plasmas
- The magnetic field is measured by faraday rotation of polarized light
- **Biermann Battery creates** magnetic field out of absolute zero

Biermann Battery Effect vs. Weibel Instability

(Medvedev & Loeb, 1999)

(Schoeffler et al, 2016)

Biermann Battery Effect vs. Weibel Instability

Weibel Instability : Kinetic Effect unique to plasmas

Highly anisotropic,

usually counter-streaming particles in shock fronts

Biermann Battery Effect : Recent Study A primordial field could also be generated due to the temperature fluctuation -> 1E-25 \sim 1E-24 G Years after the Big Bang 4 billion 8 billion 400 thousand 0.1 billion 1 billion The Big Bang Formation of first stronomical objec Recombination The Dark Age Reionization Fully ionized Fully ionized leutralized 1000 100 10 1+Redshift

(Naoz & Narayan, 2013)

- From the birth of first stars and quasars,
- the Universe is full of ionization fronts -> 1E-20 ~ 1E-18 G

Other Possibilities for Seed Fields :

- From Early Universe (Widrow 2002)
- First-generation stars
 - The weak field generated by the Biermann battery could be amplified by stellar dynamo / Magneto-rotational instability and then spread out through jet, outflow and supernovae explosion (Syrovatskii 1970, Silk & Langer 2006)
- Active Galactic Nuclei
 - Strong magnetic field arise in AGNs.
 - ~ uG (Hoyle 1969)

These fields expand adiabatically to fill a "galactic" volume via jets can be on the order of

A Summary View :

Seed fields

Biermann Battery Me Jet / outflow / winds Stellar dynamo Magneto-rotational instability Weibel instability Primordial origin

Mean-field dynamo

• • • • • • •

Amplification

Turbulent dynamo

Exgalactic field

Adiabatic compression

Galactic field