Solar dynamo

Wu Xuanyi Adviser: Prof. Yuqing Lou, Prof. Xuening Bai 2019/05/24

- Introduction: sunspots and solar cycle
- Solar dynamo model
 - $\alpha \Omega$ dynamo
 - Interface dynamo (Babcock-Leighton mechanism)
 - Flux transport dynamo
- Summary

OUTLINE

Observation: sunspots

- earliest extant record of sunspots: Book of Changes
- dark spots on sun (Galileo) 0
- have lower temperature with respect to surrounding
- life time: days to weeks 0
- Regions of intense magnetic fields : 0.1~0.3T (the normal magnetic field of sun is ~10G; for earth, 0.5G)
- Often in pairs: leading and trailing sunspots 0
 - Hale's polarity law: opposite polarity from north to south hemisphere; the polarity changes each solar cycle

$1G = 10^{-4}T$

Cycle 22 1989 August 02

Cycle 23 2000 June 26

Observation: solar cycle

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

- Sunspot activity changes spatially and periodically
- Sunspot activity has a period of ~11 years with magnetic field reversed
- Solar cycle ~ 22 years

Sunspot activity caused by advection/diffusion?

- Rm of sun>>1 => advection dominated; field line frozen in the plasma flow
- **But**, the diffusion time scale of sun ~ 10^{10} years \gg solar cycle period
- Need other mechanism to explain solar activities

Solar dynamo theory

$$-\eta \nabla \times \mathbf{B}$$
) $\eta = c^2/4\pi\sigma_e$

Diffusion

Reynolds number:

$$R_m = \frac{\tau_d}{\tau_a} = \frac{Lu}{\eta}$$

A solar dynamo model should...

- Sustain the magnetic field
- Cyclic polarity of 11year period
- Equator-ward migration of sunspondent surface field
- Polar field strength
- Observed antisymmetric parity

Equator-ward migration of sunspots and pole-ward migration of diffuse

Solar dynamo model

- $\alpha \Omega$ dynamo
- Interface dynamo (Babcock-Leighton mechanism)
- Flux transport dynamo

$\alpha \Omega$ dynamo

- Cowling's anti-dynamo theorem(1934): an axisymmetric magnetic field cannot be maintained by dynamo action => NOT easy to set up a solar dynamo
- Parker's dynamo model(1955): P => T => P => T …
- Mean field theory: $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{B'}, \qquad \mathbf{u} = \overline{\mathbf{u}} + \mathbf{u'}$

Ω effect : Differential rotation

Due to differential rotation, poloidal field produces toroidal field

α effect : Toroidal to poloidal

Coriolis force + convection of flow =>helical flow =>twist toroidal field lines

Much smaller scale; can generate poloidal field from toroidal field

Solar dynamo model

- $\alpha \Omega$ dynamo
- Interface dynamo (Babcock-Leighton mechanism)
- Flux transport dynamo

Babcock-Leighton dynamo: tachocline

Tachocline:

- the transition region of stars between the radiative interior and the differentially rotating outer convective zone
- at tachocline, the rotation abruptly changes to solid-body rotation
- the striation of tachocline can be detected through helioseismology (日震学)
- a place that can store strong toroidal field!

Babcock-Leighton dynamo: magnetic buoyancy

Consider a magnetic flux tube, Hydrostatic equilibrium requires:

If the magnetic field is **strong enough**, buoyancy would not be overwhelmed by other motions, such as convection and turbulence

Babcock-Leighton dynamo: process

Initial state: toroidal field deep inside

Magnetic field buoyancy

Babcock-Leighton dynamo on surface

Tilted leading and trailing sunspots

Coriolis force; Differential rotation

Babcock-Leighton dynamo: toroidal to poloidal

Magnetic reconnection

Non-axisymmetric; Mean polar field is too low

Solar dynamo model

- $\alpha \Omega$ dynamo
- Interface dynamo (Babcock-Leighton mechanism)
- Flux transport dynamo

Flux transport dynamo: meridional circulation

- Using helioseismology and magnetograms (磁力记录) i^{\dagger} : meridional circulation in the outer half of the solar convection zone.
- Large-scale flow, the peak velocity at the surface is 10-20 m/s
- One possible model: gyroscopic pumping. Due to the differential rotation+gradient of Coriolis force.

Credit to P. Garaud & P. Bodenheimer 2010

Flux transport dynamo

Flux transport dynamo:

- Differential rotation generates toroidal field
- Babcock–Leighton mechanism turns toroidal field into poloidal field
- the meridional circulation produce the migration of magnetic field

Credit to: Arnab Rai Choudhuri

Flux transport dynamo: migration of magnetic field

Pull the toroidal field equator-ward

Low latitude sunspots

Pull poloidal field pole-ward

poloidal field on the pole

Flux transport dynamo: the whole picture

Simulations: The formation and rise of rope-like magnetic flux systems.

 Anelastic Spherical Harmonic (ASH) code (solve MHD equation in rotating) spherical shells)

Credit to: Nelson et al.(2014)

Summary

- The sunspots shows periodic and spatially changing feature, which is related to the intense magnetic field.
- Differential rotation of sun can produce toroidal field from poloidal field.
- The flux transport dynamo can convert toroidal field to poloidal field due to meridional circulation.

Reference

- ullet
- interiors, and application to lithium dip stars. Astrophysical Journal, 719(1), 313-334.
- 52(52), 251-290.
- Journal, 121(121), 491.
- https://en.wikipedia.org/wiki/Sunspot \bullet
- https://en.wikipedia.org/wiki/Differential_rotation#Differential_rotation_of_the_Sun

Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. (2012). Buoyant magnetic loops generated by global convective dynamo action. Solar Physics, 289(2), 441-458.

• Garaud, P., & Bodenheimer, P. (2010). Gyroscopic pumping of large-scale flows in stellar

Charbonneau, P. (2014). Solar dynamo theory. Annual Review of Astronomy & Astrophysics,

Parker, E. N. (1955). The formation of sunspots from the solar toroidal field. Astrophysical

Future issues

- What sets the dynamo period
- Is the tachocline important?
- Babcock-Leighton dynamo a mere by-product model?
- What triggered grand minima?

400 Years of Sunspot Observations

Simulations: parameters

ן view o

Case	$N_r, N_ heta, N_\phi$	Ra	Ta	Re	Re'	Rm	Rm′	Ro	Roc	ν	η	Pm	T_E
D3	$97\times256\times512$	$3.28{ imes}10^5$	1.22×10^{7}	173	104	86	52	0.374	0.315	13.2	26.4	0.5	61.6
D3a D3b	$\begin{array}{c} 97 \times 256 \times 512 \\ 145 \times 512 \times 1024 \end{array}$	$5.84 imes 10^5$ $1.11 imes 10^6$	2.41×10^{7} 6.08×10^{7}	$\begin{array}{c} 244\\ 343 \end{array}$	$\begin{array}{c} 154 \\ 273 \end{array}$	$\begin{array}{c} 122 \\ 171 \end{array}$	77 136	$\begin{array}{c} 0.447 \\ 0.566 \end{array}$	$0.295 \\ 0.257$	$9.40 \\ 5.92$	$\begin{array}{c} 18.8\\11.8\end{array}$	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	$\begin{array}{c} 67.1 \\ 16.9 \end{array}$
D3-pm1 D3-pm2	$\begin{array}{c} 145 \times 256 \times 512 \\ 145 \times 512 \times 1024 \end{array}$	$2.98 imes 10^5 \ 3.08 imes 10^5$	1.22×10^{7} 1.22×10^{7}	$\begin{array}{c} 149 \\ 145 \end{array}$	102 101	$\begin{array}{c} 149 \\ 291 \end{array}$	$\begin{array}{c} 102 \\ 202 \end{array}$	$\begin{array}{c} 0.372 \\ 0.370 \end{array}$	$\begin{array}{c} 0.300 \\ 0.306 \end{array}$	$\begin{array}{c} 13.2\\ 13.2 \end{array}$	$\begin{array}{c} 13.2\\ 6.60\end{array}$	1 2	$\begin{array}{c} 18.8\\ 13.6\end{array}$
S3	$145\times512\times1024$	$7.68 imes 10^8$	4.46×10^{10}	8050	5750	4030	2880	0.581	0.262	0.218	0.435	0.5	4.01

Note. — Dynamo simulations at three times the solar rotation rate. All simulations have inner radius $r_{\rm bot} = 5.0 \times 10^{10}$ cm and outer radius of $r_{\rm top} = 6.72 \times 10^{10}$ cm, with $L = (r_{\rm top} - r_{\rm bot}) = 1.72 \times 10^{10}$ cm the thickness of the spherical shell. Evaluated at mid-depth are the Rayleigh number Ra = $(-\partial \rho/\partial S)(d\bar{S}/dr)gL^4/\rho\nu\kappa$, the Taylor number Ta = $4\Omega_0^2 L^4/\nu^2$, the rms Reynolds number Re = $v_{\rm rms}L/\nu$ and fluctuating Reynolds number Re' = $v'_{\rm rms}L/\nu$, the magnetic Reynolds number Rm = $v_{\rm rms}L/\eta$ and fluctuating magnetic Reynolds number Rm' = $v'_{\rm rms}L/\eta$, the Rossby number Ro = $\omega/2\Omega_0$, and the convective Rossby number Roc = $(Ra/Ta Pr)^{1/2}$. Here the fluctuating velocity v' has the axisymmetric component removed: $v' = v - \langle v \rangle$, with angle brackets denoting an average in longitude. For all simulations, the Prandtl number $\Pr = \nu/\kappa$ is 0.25 and the magnetic Prandtl number $\Pr = \nu/\eta$ ranges between 0.5 and 4. The viscous and magnetic diffusivity, ν and η , are quoted at mid-depth (in units of 10^{11} cm² s⁻¹). The total evolution time T_E for each simulation is given in years. The values for case S3 with the dynamic Smagorinsky SGS model utilize the mean viscosity at mid-convection zone averaged on horizontal surfaces as well as in time. For case S3 using the dynamic Smagorinsky SGS model, the values quoted are based on the time-averaged rms viscosity, conductivity, and resistivity at mid-depth, noting that these diffusion coefficients have near hundred-fold spatial variations.

Table 1

Overview of Dynamo Cases