Galactic Dynamo

Changxing Zhou Adviser: Dandan Xu 2019/05/31

TSING TO THE TOTAL TO THE TOTAL

Outline

- An Introduction to Spiral Galaxies
- Necessity of dynamo action
 - Primordial-field hypothesis
- Mean-field dynamo theory
- Criticisms of mean-field dynamo theory
- Reference
- Summary

Introduction:Spiral Galaxies

thin rotating discs of $\cong 10^{11}~stars~(90\%~of~visible~mass)$ and interstellar gas(10%)

+dark matter

The structure of Milky Way(Shukurov, 2004)

Introduction:Spiral Galaxies

the evolution of the magnetic field in a model of M83(Beck,et al,1996)

• $B_{spiral} \approx 5 \mu G$, the magnetic fields in nonrotating or slowly rotating systems such as elliptical galaxies and clusters appear to have smaller B

Polarized synchrotron intensity (contours) and magnetic field orientation of M51(Beck and Hoernes, 1996)

- Interstellar turbulence
 - In some models, driven by gravity and density gradients (supernovae, superbubble explosions…)
 - Correlation scale: $l_0 = 50 100 \,\mathrm{pc}$
 - Turbulent velocity: $v_0 \approx 10 \text{ km/s} \approx c_s \text{ at } z = 0$

Flow visualization of a turbulent jet

Differential rotation(ω effect) [1]

- Differential rotation: angular velocity varying with position
- Flat rotation curves at large radii:
 - $V = r\Omega \cong 200 \, km/s \cong const;$

- $\Omega \cong V_0/r$,
- $V_0 \cong const$

• Rotational shear rate: $G = r d\Omega/dr \cong -\Omega$

Rotation curve and shear: Milky Way (solid) and a generic galaxy (dashed)(Shukurov, 2004)

- Can the magnetic fields observed be primordial?
- Do they need to be maintained by ongoing dynamo action?
- Dynamo action: conversion of kinetic energy into magnetic energy

Can the magnetic fields observed be primordial?

- Primordial-field hypothesis
 - astrophysical battery : $V \sim 3 \times 10^{13} \text{ V}$ so enormous!
 - magnetic fields are present ab initio in the material that collapses to form a galaxy:

$$\boldsymbol{B}(\mathbf{x},0) = \boldsymbol{B_0} \hat{\mathbf{x}}$$

$$\boldsymbol{B}(R,\phi,t) = B_0 (\hat{\boldsymbol{b}} + t \frac{\mathrm{d} \, \omega}{\mathrm{d} \, \ln R} [\cos(\omega + \phi t)] \hat{\boldsymbol{\phi}})$$
Where $\hat{\boldsymbol{b}} = \hat{\boldsymbol{b}}(R) = \cos\omega t \, \hat{\mathbf{x}} + \sin \, \omega t \, \hat{\mathbf{y}}$

Can the magnetic fields observed be primordial?

- Primordial-field hypothesis^[3]
 - $\nabla B \sim \omega t^2/L$

Where L is the disk scale length and d $\omega/d r \sim \omega/L$

- Eventually, magnetic diffusion becomes important with the diffusion time scale(turbulence,random motions driven by random magneticfield,etc.)
- $\tau_{\rm d} \equiv B/\eta \nabla^2 B \approx L^2/\eta \omega^2 t^2$

Where η is the molecular diffusion coefficient

•
$$\tau_{\rm d} = t$$

•
$$t \approx \left(\frac{L^2}{n\omega^2}\right)^{\frac{1}{3}} \approx 3 \times 10^8 \ yr$$

- The age of the Milky Way: $t_{age} \approx 1.4 \times 10^9 \ yr$
- *t* much shorter than the age of a galaxy! The magnetic fields need to be maintained by ongoing dynamo action

 Galactic dynamo Changxing Zhou

Distortion of magnetic-field lines under the action of differential rotation(Widrow, et al, 2002)

Can the magnetic fields observed be primordial?

- Primordial-field hypothesis
 - observation that galactic magnetic fields form, by and large, a loosely wound spiral
 - Simulation of the Primordialfield hypothesis:tightly wound spiral
 - (only appears as a toroidal azimuthal field because of inadequate resolution?)

Polarized synchrotron intensity (contours) and magnetic field orientation of M51(Beck and Hoernes, 1996)

Distortion of magnetic-field lines under the action of differential rotation (Widrow, et al, 2002)

- It seems that there are many problems with Primordialfield hypothesis
- The galactic magnetic field need to be maintained by ongoing dynamo action
- Galactic dynamos: A magnetic dynamo consists of electrically conducting matter moving in a magnetic field in such a way that the induced currents amplify and maintain the original field.

- Mean-field dynamo theory ($\alpha\omega$ dynamo)
 - In a mean-field analysis:

$$\dot{B} = \overline{B} + b$$
, $V = \overline{V} + v$

where \bar{B} and \bar{V} represent ensemble averages of the magnetic and velocity fields and b and v are the corresponding small-scale tangled components.

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \nabla \times (\overline{\boldsymbol{V}} \times \overline{\boldsymbol{B}}) + \nabla \times \boldsymbol{\varepsilon}$$

Where ε is the effective electromotive force due to turbulent motions of the magnetic field as it is carried around by the fluid

Differential rotation

- Begin with a pure poloidal dipolelike field (a)
- Because of differential rotation, the field lines are stretched (b)

Diffusion

- The field in the equatorial plane is characterized by strong gradients and high magnetic tension.
- This tension can be relieved either by turbulent diffusion, via the β effect, or by some other process(e.g., magnetic reconnection)
- The net result is to decouple the toroidal field in the upper and lower hemispheres, as shown in Figure(c)

Turbulence

- we assume that cyclonic events occur throughout the disk.
- The toroidal field is distorted in the vertical direction

Coriolis effect

 The loops of vertical field are then twisted into the poloidal plane by the Coriolis effect

$$\frac{d\mathbf{u}}{dt} = (\mathbf{v_p} \cdot \nabla) \mathbf{v_p} - 2\boldsymbol{\omega}_0 \times \mathbf{u} + \cdots$$
Coriolis effect

- The classic example of the α effect is the distortion of a magnetic-field line by a localized helical disturbance or cyclonic event
- (a) is the field line after it has been distorted by the plume velocity field
- inclusion of the Coriolis effect, the field line will be (b)
- the current associated with this loop is antiparallel to the initial magneticfield line.

Cyclonic event as an illustration of the lpha effect(Widrow,et al,2002)

Diffusion

- Once again, some form of diffusion or dissipation is needed to eliminate magnetic field near the equatorial plane.
- Provided that this occurs, poloidal loops in upper and lower hemispheres can combine to yield a dipolelike field which reinforces the original field

Sequence of events illustrating galactic dynamo(Widrow, et al, 2002)

Galactic dynamo is an effective way to maintain the galactic magnetic field!

- The α and ω effects twist, shear, and stretch magnetic-field lines but do not create new ones.
- While they can increase the magnetic-field energy in the system, they cannot change the net flux through a surface that encloses it.
- Diffusion eliminates unwanted flux.
- Flux expulsion can occur by a number of mechanisms, including magnetic buoyancy and supernovae or superbubble explosions.

Criticisms of mean-field dynamo theory

- amplification of the regular field takes place on a time scale much longer than the eddy diffusion time associated with the turbulence.
- Lorentz forces on small scales can react back on the fluid, altering the turbulent motions, turbulent motions are suppressed and finally shutting off the dynamo

Criticisms of mean-field dynamo theory

$$\alpha \sim \alpha_T/[1+(\bar{B}/B_{eq})^2R_M^p]$$

- $\alpha_T^{[2]}$: the standard result calculated in the absence of backreaction
 - $\alpha_T \sim \min(\Omega l^2/h, v)(l:$ correlation length of the turbulence,h: the scale height, v: the rms turbulent velocity)
- R_M : the magnetic Reynolds number based on the microscopic diffusivity
- p:a constant of order unity
- In present-day galaxies, $\bar{B} \approx B_{eq}$ and $R_M \approx 10^{20}$, implying that α is reduced by enormous factors.

- mean-field dynamo contain fundamental flaws?
 - boundary conditions
 - backreaction

• ...

- The dynamo is not caused by turbulence and differential rotation?
 - a dynamo based on buoyancy of magnetic flux tubes and neutral point reconnection.

• ...

TSING STATE OF THE PROPERTY OF

Reference

- [1] Shukurov A. Introduction to galactic dynamos[J]. Newcastle University, 2004.
- [2] Beck R, Brandenburg A, Moss D, et al. GALACTIC MAGNETISM: Recent Developments and Perspectives[J]. Annual Review of Astronomy and Astrophysics, 1996, 34(1):155-206.
- [3] Widrow, Lawrence M. Origin of galactic and extragalactic magnetic fields[J]. Reviews of Modern Physics, 2002, 74(3):775-823.

TSING TIPE TO THE PROPERTY OF THE PROPERTY OF

Summary

- Galactic dynamos is a way that can induced currents amplify and maintain the original field.
- differential rotation, turbulence and diffusion are most important in this theory
- There are still many problems: The seed field, feedback, small-scale dynamo action vs large-scale fields…