The Impact of Sky Model Defects on SKA EoR Experiments A Source Blending Case Study

Chenxi Shan | Shanghai Jiao Tong University

Yongkai Zhu, Yuanyuan Zhao, Dongchao Zheng & **Haiguang Xu** @ SJTU Sarah White @ Rhodes Sanjay Bhatnagar @ NRAO Ben McKinley & Jack Line @ Curtin Zhenghao Zhu & Hekun Li @ SHAO

OUTLINE

Background Systematics >> Calibration-induced biases

MethodBlending as a sky-model defect for the SKA1-LowHybrid Evaluation Pipeline (reconstructed sky)

Results Impact in the measurement (2D-PS) space

EOR EFFOF BUCGEt

Calibration - Imaging - Analysis

Liu & Shaw 2020

Small Error Budget

How do we spend the error budget?

EOR EFFOF BUCGEt

Callibration Error >> Propagation effect

Calibration

Dirty Map

Instrumen

Telescope's Electronics Bandpass Responses, etc.

EoR Science: High precisin calibration Is required

Backaround

Prior Knowledge

Calibration Sci Data

Sky Signal

& External

Radio Frequency Interference lonospheric Distortion, etc.

Cclibration

, meas

Calibrate

Measured Visbility

Backaround

 $V_{ii}^{sky-meas} = g_i^* g_j V_{ii}^{sky-true} + n_{ij}^{res}$

See detailed derivations in Wieringa 1992 & Liu et al. 2010

Calibration >> Infer the TRUE sky responses

II-calibration Effects

Artefacts Wijnholds et al. 2016

Access Noises Patil et al. 2016

Emission Suppression Patil et al. 2016

-calibration Effects

Propagated biases in the PS space hinder the EoR detection

How to idenitify sources of error?

SKASky Model Populations Method

Modified from Prandoni et al. 2015

Discrete >> Crowded Sky (the same populations as optical)

Modified from Novak et al. 2018

Source Blending

Method

Discerte Source Model (65-km) SKA Array Config (Confusion-limited) Noise Level Blending Ratio: 5 - 20%

Blending Effects

Stacked	Bright-Bright	Bright-Faint	Faint-Bright	Faint-Faint
Overlapping	Bright-Bright	Bright-Faint	Faint-Bright	Faint-Faint
	Bright-Bright	Bright-Faint	Faint-Bright	Faint-Faint
	Bright-Bright	Bright-Faint	Faint-Bright	Faint-Faint
Proximity				
	Bright-Bright	Bright-Faint	Faint-Bright	Faint-Faint
	Object A Object B		True Sky 🥌 Detection	$> \circ \circ$
	Brigh	ter Fainter	Extended Compact	

Spatial domain Flux + Position Error

Method

Spectral domain Spectral index deviation

How to evaluate the impact?

Evaluation Pipeline

Block Digaram of the Simulation & Analytic Pipeline

Method

- Analytic Pipeline ----> Simulation Pipeline ----> Software modules
- Software lables

Dirty & Clean maps: Sky emission

Sky maps: Sky emission & sky model

Dirty & Clean maps: Propogation visibility bias

Data: Blending induced residual error

'Observed' visibilities: Sky emission & sky model

7 'Observed' visibilities: Propogation viaibility bias

Pipeline: Blending Effects Method

ESim + BlendSim >> Sky model pairs

Blending Effects

Next-gen E2E simulation suite >> Simulate defects

Method

FG21Sim+SimulationSuite

ESim (Simple/Gaussian/Fedility) + BlendSim

Spatial domain:

Source pairs * clean beam

>> distorted flux density distribution

Spectral domain:

Source pairs fits new spectral index

>> deviated integrated spectral index

Looks like a Jetted-FR1 (One of the most common RGs)

Pipeline: Defects Evaluation Method

SVD-based Bias Estimator >> Gain errors

Defects Fucilution

Method

 $V_{ii}^{sky-meas} = g_i^* g_j V_{ii}^{sky-model} + n_{ij}^{res}$ $V_{ii}^{sky-meas} = g_i^* g_j V_{ij}^{sky-model} + n_{ij}^{res}$ $n_{ij}^{res} + g_i^* g_j V_{ij}^{sky-model} + n_{ij}^{res} = g_i^* g_j V_{ij}^{sky-model} + n_{ij}^{res}$

Sky model pairs >> Relative gain errors

Pipeline: Visibility-bids

Visibility Bias Estimation >> Propagated biases

Simulation Specs

Smallest physical scale > SKA1-Low resolution > 6" @ 200 MHz

Quantify the impact of source
blending at 3 levelsHigh
Mid
LowBlending Ratio: 5%
Blending Ratio: 0.5%

Component	Usage	Sky Coverage	Pixel Size	Exposure	Preprocessing	Post-processing
'Ideal' sky model	Calibration	$5^{\circ} \times 5^{\circ}$	1 arcsec	2 min	None	None
'Blended' sky model	Calibration	$5^{\circ} \times 5^{\circ}$	1 arcsec	2 min	None	None
Extragalactic foregrounds	Evaluation	$2^{\circ} \times 2^{\circ}$	2 arcsec	6 h	Bright sources are masked	Clean images are cropped as 1°× 1°
Galactic foregrounds	Evaluation	$2^{\circ} \times 2^{\circ}$	2 arcsec	6 h	Tapered at 1.5°	Clean images are cropped as 1°× 1°
EoR signal	Evaluation	$2^{\circ} \times 2^{\circ}$	2 arcsec	6 h	None	Dirty images are cropped as 1°× 1°

CPU, GPU, Memory expensive: Resolution over FoV

Method

The Impact in the 2D-PS space.

Access Power

Additive powers are leaked into the **EoR-windows**

PAGI

Bounderies: Solid - Horizon & Dashed -- FoV | Shared Colorbar

'Residual' powers vs 'Original' powers

Access Power

Additive powers are leaked into the **EoR-windows**

RACII

Galactic 'Residual' Power / Galactic 'Original' Power

Bounderies: Solid - Horizon & Dashed -- FoV | Shared Colorbar

'Residual' powers vs 'Original' powers

PS impact

High Blending Ratio: 5% Strong within both boundries

Blending Ratio: 0.5% Mid **Strong within Horizon**

Low Blending Ratio: 0.05% Interference within both

Extragalactic 'Residual' Power / EoR 'Original' Power

Bounderies: Solid - Horizon & Dashed -- FoV | Shared Colorbar

Results

'Residual' powers vs 'Original' EoR powers

PS impact

High Blending Ratio: 5% Strong within both boundries

Blending Ratio: 0.5% Mid **Strong within Horizon**

Low Blending Ratio: 0.05% **Interference within Horizon**

Bounderies: Solid - Horizon & Dashed -- FoV | Shared Colorbar

Results

Galactic 'Residual' Power / EoR 'Original' Power

'Residual' powers vs 'Original' EoR powers

Summery

- EoR Experiments operate under precesion analysis pipeline
- Source blending will be a key defect to combat for SKA1-Low
- De-blending is required for the sky-model construnction for the SKA1-Low

Fg21Sim+ is an open-source project, it acknowledges

- Fg21Sim Core Liberary developed by Weitian Li
- 21cmFAST*, OSAKR, WSClean, DUCCO, & HEALPix from the open-source community Special thanks to Pro. Andrei Mesinger for the help with the 21-cm simulation
- Computation >> GRAVITY & SGI cluster @ SJTU

Sky model defects >> residual gain errors >> visibility, imaging, PS biases • Blending-induced III-calibration + strong foregrounds >> hinders EoR detection

